Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018, Cell Press
This visual abstract depicts how cancer immunity against multiple types of cancer can be achieved using an easily generable iPSC-based cancer vaccine. This immunity is based on overlapping epitopes between iPSCs and cancer cells and can also be achieved by reactivating the immune system as an adjuvant. Credit: Kooreman and Kim et al./Cell Stem Cell

Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses in animals that had tumors removed. The work appears in the journal Cell Stem Cell on Feb. 15.

iPSCs are generated from adult cells genetically reprogrammed to mimic embryonic stem cells' ability to become any type of cell in the body.

In the study, 75 mice received versions of the iPSC vaccine created from iPSCs that have been inactivated by irradiation. Within four weeks, 70 percent of the vaccinated mice fully rejected newly introduced breast , while the remaining 30 percent had significantly smaller tumors. The effectiveness of the iPSC vaccine was also validated for lung and skin cancers.

Lead author Joseph C. Wu at Stanford's Cardiovascular Institute and Institute for Stem Cell Biology and Regenerative Medicine and colleagues found that a large amount of the antigens present on iPSCs are also present on cancer cells. When lab mice were vaccinated with iPSCs, their immune systems built an immune response to the antigens on the iPSCs. Because of key similarities between the iPSCs and cancer cells, the animals simultaneously built an against cancer.

The iPSCs seemed to "prime their immune systems to eradicate ," Wu says.

To be effective, anti-cancer vaccines must introduce one or more antigens into the body that activate T cells or produce antibodies capable of recognizing and binding to antigens on the surfaces of cancer cells.

One of the biggest challenges for cancer immunotherapies is the limited number of antigens that can be presented to the immune system at a given time. The Stanford study uses an animal's own cells to create an iPSC-based cancer vaccine that simultaneously targets multiple tumor antigens. Using whole iPSCs eliminates the need to identify the most optimal antigen to target in a particular type of cancer.

"We present the immune system with a larger number of tumor antigens found in iPSCs, which makes our approach less susceptible to immune evasion by cancer cells," Wu says. The researchers also combined iPSCs with an immunity booster—a snippet of bacterial DNA called CpG that has been deemed safe in human trials. Stanford oncologist and study co-author Ronald Levy previously found CpG to be a potent tumor-fighting agent.

In the future, a patient's skin or blood may be re-programmed into iPSCs and administered as an anti-cancer vaccine or as a follow-up booster after surgery, chemotherapy, or radiation therapy.

"What surprised us most was the effectiveness of the iPSC vaccine in re-activating the to target ," Wu says. "This approach may have clinical potential to prevent tumor recurrence or target distant metastases."

Explore further: Boosting cancer therapy with cross-dressed immune cells

More information: Cell Stem Cell, Kooreman and Kim et al.: "Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo" http://www.cell.com/cell-stem-cell/fulltext/S1934-5909(18)30016-X , DOI: 10.1016/j.stem.2018.01.016

Related Stories

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

African subterranean animal exhibits 'extraordinary' cancer resistance

June 16, 2016
Naked mole-rats (NMR) are the longest-living rodent species and exhibit 'extraordinary' resistance to cancer. Mole-rats live up to 30 years, 10 times longer than mice, and captured colonies almost never show any type of cancer. ...

Cancer vaccine could use immune system to fight tumors

February 27, 2014
Cincinnati Cancer Center (CCC) and UC Cancer Institute researchers have found that a vaccine, targeting tumors that produce a certain protein and receptor responsible for communication between cells and the body's immune ...

Recommended for you

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

Loss of two genes drives a deadly form of colorectal cancer, reveals a potential treatment

December 11, 2018
Colorectal cancers arise from earlier growths, called polyps, found on the inner surface of the colon. Scientists are now learning that polyps use two distinct molecular pathways as they progress to cancer, called the "conventional" ...

Taking uncertainty out of cancer prognosis

December 11, 2018
A cancer diagnosis tells you that you have cancer, but how that cancer will progress is a terrifying uncertainty for most patients. Researchers at Cold Spring Harbor Laboratory (CSHL) have now identified a specific class ...

Successful anti-PD-1 therapy requires interaction between CD8+ T cells and dendritic cells

December 11, 2018
A team led by a Massachusetts General Hospital (MGH) investigator has found that successful cancer immunotherapy targeting the PD-1 molecule requires interaction between cytotoxic CD8+ T cells, which have been considered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.