Cancer 'signature' first step toward blood test for patients

March 8, 2018, Walter and Eliza Hall Institute
Dr Sarah Best (left) and Dr Kate Sutherland from the Walter and Eliza Hall Institute, Melbourne, led a team that revealed a unique molecular signature in the blood that could be used to detect aggressive lung cancers with a simple blood test and identify patients who will respond to immunotherapies. Credit: Walter and Eliza Hall Institute

A discovery by Melbourne researchers could help to identify patients with a particularly aggressive type of lung cancer that are likely to respond to immunotherapies currently used in the clinic to treat other cancers.

The research has also revealed a unique molecular signature in the blood that could, in the future, be used to detect these aggressive cancers with a simple blood test.

Walter and Eliza Hall Institute cancer researchers Dr Sarah Best and Dr Kate Sutherland led the research, working with colleagues at Metabolomics Australia at the Bio21 Institute, University of Melbourne. The study was published today in Cell Metabolism.

The study focused on the role of two cell signalling pathways - KEAP1/NRF2 and PI3K - which are known to be involved in human lung cancers called adenocarcinomas.

"More than one in five lung adenocarcinomas have alterations in the KEAP1/NRF2 pathway, suggesting it is a major cancer driver," Dr Sutherland said. "These cancers are very aggressive, are resistant to standard therapies and have a poor prognosis, so new therapies are urgently needed."

Adenocarcinoma accounts for around 40 per cent of lung cancers and is often associated with a history of smoking, but is also the most commonly diagnosed lung cancer in non-smokers. It occurs more frequently in females and in young people than other types of lung cancer.

Dr Best said their study revealed that the tumours had characteristics indicating they were likely to respond well to immunotherapy.

"This is extremely important because these tumours are chemotherapy and radiotherapy resistant, meaning there are effectively no current treatments for these patients," Dr Best said.

Lung cancer researchers Dr Sarah Best and Dr Kate Sutherland from the Walter and Eliza Hall Institute, Melbourne, describe their new research, which has revealed a unique molecular signature in the blood linked to aggressive lung cancers.The discovery, published in Cell Metabolism, could lead to a simple blood test for the early detection of these hard-to-treat lung cancers and identify patients who will respond to immunotherapies. Credit: Walter and Eliza Hall Institute

"Using preclinical models, we showed for the first time that these tumours have the 'markers' that respond to anti-PD-1 and anti-CTLA-4 immunotherapies, which are some of the most exciting new therapies being investigated in the clinic.

"But more importantly, we showed that these immunotherapies were effective in fighting the tumours and leading to tumour regression in our ."

Dr Best said the research showed that non-stop signalling caused by mutations in the KEAP1/NRF2 and PI3K pathways caused lung adenocarcinomas to develop.

"This is the first time anyone has shown that these alterations directly cause lung adenocarcinomas. With this knowledge, we can further investigate how targeting those pathways could lead to therapies for these aggressive and hard-to-treat cancers," she said.

Dr Sutherland said the unique molecular signatures found in the blood could be a tool to identify patients who would respond to immunotherapies, or even as an early detection test for these cancers.

"Working with our colleagues Dr David De Souza and Professor Malcolm McConville at Bio21 Institute, we were able to identify a unique 'breadcrumb' trail that the cancers leave behind in the blood," Dr Sutherland said.

"Our hope would be that the test could identify patients likely to respond to immunotherapies, but also that it could be a simple, non-invasive blood test for the early detection of these lung cancers.

"The next steps would be to analyse human samples to prove the same is true in lung patients, but we need more funding for that work to continue and to generate results that will lead to better detection and treatments for the community."

Explore further: Molecular 'magnets' could improve cancer immunotherapy

Related Stories

Molecular 'magnets' could improve cancer immunotherapy

February 8, 2018
Chemicals that attract specialised immune cells toward tumours could be used to develop better immunotherapies for cancer patients, according to new research published in Cell.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Potential therapy identified for aggressive breast cancer

January 25, 2018
The European Cancer Stem Cell Research Institute, based with Cardiff University, has repurposed a current cancer therapy, TRAIL, to find a new treatment for advanced cancers that are resistant to anti-hormone therapy.

New treatment hope for women with BRCA1 breast cancers

June 7, 2017
Researchers have found a new way to use immunotherapy, a breakthrough mode of cancer treatment which harnesses the patient's immune system, to treat an aggressive form of breast cancer.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New system finds and targets vulnerabilities in lung cancer cells

October 2, 2017
Genetic changes that help lung cancer thrive also make it vulnerable to a promising experimental drug, according to a study led by researchers from Perlmutter Cancer at NYU Langone Health, and published online October 2 in ...

Recommended for you

New drugs are improving survival times for patients with aggressive type of blood cancer, study finds

June 25, 2018
Survival times for a highly aggressive type of blood cancer have nearly doubled over the last decade due to the introduction of new targeted drugs, a Yorkshire study has shown.

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.