Cancer 'signature' first step toward blood test for patients

March 8, 2018, Walter and Eliza Hall Institute
Dr Sarah Best (left) and Dr Kate Sutherland from the Walter and Eliza Hall Institute, Melbourne, led a team that revealed a unique molecular signature in the blood that could be used to detect aggressive lung cancers with a simple blood test and identify patients who will respond to immunotherapies. Credit: Walter and Eliza Hall Institute

A discovery by Melbourne researchers could help to identify patients with a particularly aggressive type of lung cancer that are likely to respond to immunotherapies currently used in the clinic to treat other cancers.

The research has also revealed a unique molecular signature in the blood that could, in the future, be used to detect these aggressive cancers with a simple blood test.

Walter and Eliza Hall Institute cancer researchers Dr Sarah Best and Dr Kate Sutherland led the research, working with colleagues at Metabolomics Australia at the Bio21 Institute, University of Melbourne. The study was published today in Cell Metabolism.

The study focused on the role of two cell signalling pathways - KEAP1/NRF2 and PI3K - which are known to be involved in human lung cancers called adenocarcinomas.

"More than one in five lung adenocarcinomas have alterations in the KEAP1/NRF2 pathway, suggesting it is a major cancer driver," Dr Sutherland said. "These cancers are very aggressive, are resistant to standard therapies and have a poor prognosis, so new therapies are urgently needed."

Adenocarcinoma accounts for around 40 per cent of lung cancers and is often associated with a history of smoking, but is also the most commonly diagnosed lung cancer in non-smokers. It occurs more frequently in females and in young people than other types of lung cancer.

Dr Best said their study revealed that the tumours had characteristics indicating they were likely to respond well to immunotherapy.

"This is extremely important because these tumours are chemotherapy and radiotherapy resistant, meaning there are effectively no current treatments for these patients," Dr Best said.

Lung cancer researchers Dr Sarah Best and Dr Kate Sutherland from the Walter and Eliza Hall Institute, Melbourne, describe their new research, which has revealed a unique molecular signature in the blood linked to aggressive lung cancers.The discovery, published in Cell Metabolism, could lead to a simple blood test for the early detection of these hard-to-treat lung cancers and identify patients who will respond to immunotherapies. Credit: Walter and Eliza Hall Institute
"Using preclinical models, we showed for the first time that these tumours have the 'markers' that respond to anti-PD-1 and anti-CTLA-4 immunotherapies, which are some of the most exciting new therapies being investigated in the clinic.

"But more importantly, we showed that these immunotherapies were effective in fighting the tumours and leading to tumour regression in our ."

Dr Best said the research showed that non-stop signalling caused by mutations in the KEAP1/NRF2 and PI3K pathways caused lung adenocarcinomas to develop.

"This is the first time anyone has shown that these alterations directly cause lung adenocarcinomas. With this knowledge, we can further investigate how targeting those pathways could lead to therapies for these aggressive and hard-to-treat cancers," she said.

Dr Sutherland said the unique molecular signatures found in the blood could be a tool to identify patients who would respond to immunotherapies, or even as an early detection test for these cancers.

"Working with our colleagues Dr David De Souza and Professor Malcolm McConville at Bio21 Institute, we were able to identify a unique 'breadcrumb' trail that the cancers leave behind in the blood," Dr Sutherland said.

"Our hope would be that the test could identify patients likely to respond to immunotherapies, but also that it could be a simple, non-invasive blood test for the early detection of these lung cancers.

"The next steps would be to analyse human samples to prove the same is true in lung patients, but we need more funding for that work to continue and to generate results that will lead to better detection and treatments for the community."

Explore further: Molecular 'magnets' could improve cancer immunotherapy

Related Stories

Molecular 'magnets' could improve cancer immunotherapy

February 8, 2018
Chemicals that attract specialised immune cells toward tumours could be used to develop better immunotherapies for cancer patients, according to new research published in Cell.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Potential therapy identified for aggressive breast cancer

January 25, 2018
The European Cancer Stem Cell Research Institute, based with Cardiff University, has repurposed a current cancer therapy, TRAIL, to find a new treatment for advanced cancers that are resistant to anti-hormone therapy.

New treatment hope for women with BRCA1 breast cancers

June 7, 2017
Researchers have found a new way to use immunotherapy, a breakthrough mode of cancer treatment which harnesses the patient's immune system, to treat an aggressive form of breast cancer.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New system finds and targets vulnerabilities in lung cancer cells

October 2, 2017
Genetic changes that help lung cancer thrive also make it vulnerable to a promising experimental drug, according to a study led by researchers from Perlmutter Cancer at NYU Langone Health, and published online October 2 in ...

Recommended for you

Two ways cancer resists treatment are actually connected, with one activating the other

December 18, 2018
Drugs that target BRAF and MEK in cancer have shown promise in treating a subset of melanoma that carries a mutation in the BRAF gene, but drug resistance usually emerges, reversing the benefit of these drugs and limiting ...

HPV discovery raises hope for new cervical cancer treatments

December 18, 2018
Researchers at the University of Virginia School of Medicine have made a discovery about human papillomavirus (HPV) that could lead to new treatments for cervical cancer and other cancers caused by the virus.

Vaccine, checkpoint drugs combination shows promise for pancreatic cancers

December 18, 2018
Researchers at the Johns Hopkins Kimmel Cancer Center discovered a combination of a cancer vaccine with two checkpoint drugs reduced pancreatic cancer tumors in mice, demonstrating a possible pathway for treatment of people ...

Researchers identify ways breast cancer avoids immune system detection

December 18, 2018
Recent breakthroughs in immunotherapy are making a huge difference in treating some forms of cancer, especially metastatic cancer. But breast cancer has proven a tricky foe for this new therapy, and an interdisciplinary team ...

Metal chemotherapy drugs boost the impact of immunotherapy in cancer

December 18, 2018
Due to their powerful tumour-killing effect, metal-based chemotherapies are frequently used in cancer treatment. However, it was hitherto assumed that they damaged the immune system, because of their cytotoxic (cell-damaging) ...

10-year follow-up after negative colonoscopies linked to lower colorectal cancer risk

December 17, 2018
Ten years after a negative colonoscopy, Kaiser Permanente members had 46 percent lower risk of being diagnosed with and were 88 percent less likely to die from colorectal cancer compared with those who did not undergo colorectal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.