Molecular 'magnets' could improve cancer immunotherapy

February 8, 2018, The Francis Crick Institute
Molecular 'magnets' could improve cancer immunotherapy
A mouse tumour (grey/white areas) being infiltrated by cDC1 (yellow cells) that exited from blood vessels (blue). Red and green identify other immune cells. Infiltration by cDC1 triggers anti-cancer immune responses; this tumour will eventually be rejected by the mouse's immune system. Credit: Professor Caetano Reis e Sousa, Francis Crick Institute

Chemicals that attract specialised immune cells toward tumours could be used to develop better immunotherapies for cancer patients, according to new research published in Cell.

Scientists at the Francis Crick Institute have discovered that called Natural Killer cells accumulate in tumours and release chemicals that attract specialised (cDC1) - known for triggering anti-cancer immune responses - to the tumour.

Genes associated with Natural Killer cells and cDC1 correlated with cancer patient survival in a dataset of over 2,500 patients with skin, breast, neck and lung cancers. A similar correlation was seen in an independent group of , with a particularly positive outcome for women with triple negative breast cancer, which typically has a poor prognosis.

"Our findings have given us a renewed appreciation of the importance of Natural Killer cells and cDC1 in the immune response against cancer," says Professor Caetano Reis e Sousa, Senior Group Leader at the Crick, who led the study. "It's still early days, but attracting more cDC1 to tumours could be the basis of a new immunotherapy for ."

The team also showed that prostaglandin E2 (PGE2), a molecule produced by some cancer cells, suppresses Natural Killer cell activity and reduces the responsiveness of cDC1 to the chemical attractants. This suggests that blocking PGE2 with aspirin might help boost the effectiveness of immunotherapies by restoring cDC1 levels in tumours.

"Now that we know a bit better how this key anti-cancer response works, we can look at identifying other ways in which cancers get around it," says Caetano. "This understanding will ultimately help us to develop new immunotherapy approaches to help more patients."

Professor Karen Vousden, Cancer Research UK's chief scientist, said: "This interesting research reveals more about the way the body's immune system interacts with cancer, exposing one way in which cancer can avoid attack.

"Studies like this highlight the complexity of this relationship and may reveal another way in which the immune system can be harnessed to treat . It's vital that work continues to help make immunotherapies more effective and beneficial to more patients."

Explore further: Cancer-causing mutation suppresses immune system around tumours

More information: Jan P. Böttcher et al, NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control, Cell (2018). DOI: 10.1016/j.cell.2018.01.004

Related Stories

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Researchers discover new approach to stimulate an immune response against tumor cells

January 30, 2018
New drugs that activate the immune system to target cancer cells have improved the lives of many patients with cancer. However, immunotherapies are not effective in all patients, and the success of these therapies depends ...

Aspirin could hold the key to supercharged cancer immunotherapy

September 3, 2015
Giving cancer patients aspirin at the same time as immunotherapy could dramatically boost the effectiveness of the treatment, according to new research published in the journal Cell today (Thursday).

New drug to supercharge immune cells in the fight against cancer

September 28, 2017
A new cancer treatment with the ability to normalise tumour blood vessels and boost the body's immune system has been developed by researchers from The University of Western Australia and the Harry Perkins Institute of Medical ...

Cancer relapse linked to body's own immune system

October 16, 2017
Cancer cells that survive after treatment may use the body's own immune system to wake themselves up and fuel their growth, a new study shows.

Immunotherapy treatment option for selected breast cancer patients, genetic study suggests

September 13, 2017
Immunotherapy drugs could help some breast cancer patients based on the genetic changes in their tumours, researchers at the Wellcome Trust Sanger Institute and their collaborators find. Published today (13 September) in ...

Recommended for you

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

Catching up to brain cancer: Researchers develop accurate model of how aggressive cancer cells move and spread

February 15, 2018
A brief chat at a Faculty Senate meeting put two University of Delaware researchers onto an idea that could be of great value to cancer researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.