Human 'glucostat' identified

March 7, 2018, Karolinska Institutet

Pancreatic islets have the overall responsibility for maintaining normal blood glucose levels in the body, according to a new study by researchers at Karolinska Institutet in Sweden and the University of Miami Miller School of Medicine. The findings, published in the scientific journal Cell Metabolism, have important implications for certain diabetes treatments.

Blood levels are tightly regulated in living organism. Levels that are too low (hypoglycemia) or too high (hyperglycemia) are severe threats to health, the latter resulting in diabetes. Target glycemic levels vary between different animal species, meaning that a normal glucose concentration in mice can, for example, be considered diabetic to humans.

Exactly how glucose homeostasis is controlled is unknown, but it is known to involve several organs including the liver, the hypothalamus, and the hormone-releasing pancreatic islets, or islets of Langerhans. However, the interaction between these organs is complex, and each one of them has its own glucose set point.

"We wanted to test whether there is a leading organ or mechanism that maintains normal blood glucose levels within the characteristic narrow range in different animal species," says first author Rayner Rodriguez-Diaz, researcher at the University of Miami Miller School of Medicine, U.S., and Karolinska Institutet, Sweden. "Our hypothesis was that the glycemic set point results from the pancreatic islets working as an organ, where the hormonal output is governed by features and mechanisms intrinsic to the tissue."

To test this hypothesis, the researchers transplanted pancreatic islets from different species, including humans, into diabetic and non-diabetic mice. They then measured blood glucose levels and in the recipient mice.

"We found that the engrafted islets transferred the glycemic levels of the donor species. This indicates that the pancreatic islets have the overall responsibility for maintaining normal blood glucose levels, making them the 'glucostat' in our bodies," says principal investigator Per-Olof Berggren, Professor at the Rolf Luft Research Centre for Diabetes and Endocrinology at Karolinska Institutet's Department of Molecular Medicine and Surgery.

An interesting finding was that, in humans in contrast to rodents, the cells releasing the hormone glucagon in the pancreatic islets are of crucial importance for the regulation of insulin-producing cells, and thus the regulation of blood glucose levels.

"This means that it is imperative to use human pancreatic islets when investigating how this complex microorgan regulates under normal conditions, and why this is not functioning in diabetes," says Alejandro Caicedo, researcher at the University of Miami Miller School of Medicine. "Our findings have implications for transplantation and regenerative approaches to the treatment of diabetes, because restoring normal may require more than replacing only the insulin-producing cells."

According to the researchers, in order to cure diabetes with the help of stem cell technology in the future, it will be necessary to obtain all the cells found in the islets and then create artificial islets for transplantation.

"Furthermore, therapeutic strategies using glucagon receptor antagonists as hypoglycemic agents need to be reassessed, as they directly affect the ' ability to function as glucostats," says Professor Berggren.

Explore further: The best place to treat type 1 diabetes might be just under your skin

More information: "Paracrine interactions within the pancreatic islet determine the glycemic set point" Cell Metabolism (2018). DOI: 10.1016/j.cmet.2018.01.015

Related Stories

The best place to treat type 1 diabetes might be just under your skin

August 14, 2017
A group of U of T researchers have demonstrated that the space under our skin might be an optimal location to treat type 1 diabetes (T1D).

Young vessels rejuvenate aged insulin-producing beta cells

November 17, 2014
A recent study published in the journal PNAS shows that young capillary vessels rejuvenate aged pancreatic islets. The finding challenges prevailing views on the causes of age-dependent impaired glucose balance regulation, ...

MicroRNA-708 overexpression suppresses beta-cell proliferation

October 19, 2017
(HealthDay)—Researchers have identified a novel mechanism of glucose regulation of β-cell function and growth by repressing stress-induced microRNA-708 (miR-708), according to a study published online Oct. 2 in Diabetes.

Unique pancreatic stem cells have potential to regenerate beta cells, respond to glucose

February 27, 2018
Scientists from the Diabetes Research Institute at the University of Miami Miller School of Medicine have confirmed the existence of progenitor cells within the human pancreas that can be stimulated to develop into glucose-responsive ...

Normal insulin rhythm restored in mouse pancreas cells by glucose pulse

October 27, 2016
Pulses of the sugar glucose can restore normal insulin release in mouse pancreas cells that have been exposed to excess glucose, according to a study published in PLOS Computational Biology. This finding could improve understanding ...

Research could treat Type I Diabetes by engineering pancreatic islets outside the body

August 23, 2017
Tiny packets of cells called islets throughout the pancreas allow the organ to produce insulin. Type 1 diabetes—also known as juvenile diabetes - tricks the immune system into destroying these islets. Patients must take ...

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.