Inherited mutation leads to overproduction of EPO

March 9, 2018, University of Basel
Inheritance of the familial erythrocytosis. Credit: University of Basel, Department of Biomedicine

A newly discovered hereditary mutation is responsible for an increased production of erythropoietin (EPO) in the blood. This mutation causes a messenger RNA (mRNA) that is not normally involved in the formation of proteins to be reprogrammed so that it produces EPO, thus abnormally increasing the number of red blood cells. Researchers from the Department of Biomedicine at the University of Basel and University Hospital Basel reported these findings in The New England Journal of Medicine.

In patients suffering from erythrocytosis, the mass (erythrocytes) is exceptionally high. The disease is usually triggered by a genetic disorder in the bone marrow, which leads to increased production of red cells.

Researchers from the University of Basel and University Hospital Basel have now identified the first mutation in the EPO gene in a family with hereditary erythrocytosis. Ten affected family members from four generations took part in the study.

Using a genome-wide linkage analysis and gene sequencing, the researchers discovered that all of the affected family members lacked a single base in the EPO gene. As the EPO hormone increases the production of red blood cells, it was likely that this mutation caused the disease.

However, the researchers were initially puzzled. This mutation would actually lead to a loss of function of the EPO gene, because the absence of the base shifts the reading frame of the genetic code, meaning that no more EPO protein can be formed. Despite this, the concentration of EPO hormone in the patients' blood measurably increased rather than decreased.

The explanation was found using the CRISPR method, which allowed the researchers to engineer carrying the EPO mutation. There is a second, hidden mRNA in the EPO gene that is not normally involved in the production of a protein. As the researchers show, the mutation also leads to a shift in the reading frame of this second mRNA, this time with the result that more biologically active EPO hormone is produced.

"The mechanism is intriguing," says study leader Professor Radek Skoda from the University of Basel's Department of Biomedicine. "The mutation reprograms the gene product so that it gains a new function and is misused to overproduce EPO." With consequences for the patients, who suffer from headaches and dizziness thanks to the increased red blood mass.

Mutations in the EPO gene should be taken into account in future searches for the causes of hereditary erythrocytosis, write the researchers in The New England Journal of Medicine.

Explore further: Team reports progress in pursuit of sickle cell cure

More information: Jakub Zmajkovic et al, A Gain-of-Function Mutation in EPO in Familial Erythrocytosis, New England Journal of Medicine (2018). DOI: 10.1056/NEJMoa1709064

Related Stories

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

The toxic relationship between ALS and frontotemporal dementia

February 5, 2018
ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new USC Stem Cell study published in Nature Medicine.

New genetic mutation that causes male infertility discovered

August 3, 2017
Researchers at Ben-Gurion University of the Negev and Soroka University Medical Center in Beer-Sheva, Israel have discovered a new genetic mutation that prevents sperm production.

Genome therapy could lead to new treatment for life-threatening blood disorders

July 17, 2017
Genome therapy with beneficial natural mutation could lead to new treatment for life-threatening blood disorders

Bone disease traced to the Middle Ages

June 19, 2017
The special form of the bone disease osteopetrosis that exists in Västerbotten is due to a gene mutation that can be traced back to the Middle Ages and leads to defective bone resorption, according to new research led at ...

Family members without inherited mutation have increased risk of melanoma

December 8, 2017
In families who carry certain inherited mutations that increase the risk for melanoma, members who do not carry the mutation also have an increased risk of melanoma, a study from Karolinska Institutet published in Genetics ...

Recommended for you

Researchers identify a new cause of childhood mitochondrial disease

September 20, 2018
A rapid genetic test developed by Newcastle researchers has identified the first patients with inherited mutations in a new disease gene.

Test could detect patients at risk from lethal fungal spores

September 20, 2018
Scientists at The University of Manchester have discovered a genetic mutation in humans linked to a 17-fold increase in the amount of dangerous fungal spores in the lungs.

Why some human genes are more popular with researchers than others

September 18, 2018
Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in ...

Class of neurological disorders share 3-D genome folding pattern, study finds

September 18, 2018
In a class of roughly 30 neurological disorders that includes ALS, Huntington's Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or ...

Researchers resolve decades-old mystery about the most commonly mutated gene in cancer

September 18, 2018
The most commonly mutated gene in cancer has tantalized scientists for decades about the message of its mutations. Although mutations can occur at more than 1,100 sites within the TP53 gene, they arise with greatest frequency ...

Study of one million people leads to world's biggest advance in blood pressure genetics

September 17, 2018
Over 500 new gene regions that influence people's blood pressure have been discovered in the largest global genetic study of blood pressure to date, led by Queen Mary University of London and Imperial College London.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.