Taking the jab (and the chill) out of vaccination

March 13, 2018, James Cook University
The vaccine was effective when administered orally to mice, and theoretically would not require refrigeration. Credit: Romy Bullerjahn

Scientists in Cairns (Australia) and Cardiff (Wales) have taken an important first step towards solving two problems that hinder access to vaccines: they need to be kept cool, and no one likes needles.

In the April edition of the Journal of Clinical Investigation, a team led by Associate Professor John Miles from James Cook University and Cardiff University's Professor Andrew Sewell describe how they engineered a new production platform and built a fully synthetic flu vaccine.

The vaccine protected mice from potentially lethal doses of and also worked on human cells when tested in the laboratory.

"Theoretically, this prototype synthetic vaccine would not require refrigeration and could sit on the shelf for years without going out of date," Professor Sewell said.

"In addition to being expensive, maintaining a cold chain of delivery can be extremely difficult in remote areas of the globe. In hot places without reliable electricity, this can count for the majority of the cost of vaccines, and significant wastage."

Taking the needle out of the equation would also make vaccinations simpler to administer, and a whole lot less frightening.

"To be administered orally, vaccines need to be able to survive the acids and enzymes in our stomachs. A couple - including the - can do this, but most cannot," said Associate Professor Miles, Principal Research Fellow at the Australian Institute of Tropical Health and Medicine.

The team showed the synthetic vaccine was hyper-stable in both stomach and human blood, meaning it could be taken orally. Promisingly, it was effective when administered orally to mice.

To build their synthetic vaccine, the team used D-amino acids. "These are mirror images of the L-amino acids that are the building blocks of all proteins," Associate Professor Miles said. "While L-amino acids are common in nature, D-amino acids are rare. We were attracted to them because they're very stable, meaning these compounds are harder to break down."

After trialing D-Amino acids in various combinations, the researchers selected a version that successfully provoked the immune system's T cells to launch a defensive attack, protecting the mice when they were later given swine flu.

"We were very surprised at how flexible the immune system is in recognizing dangerous targets," Associate Professor Miles said. "It can't actually tell the difference between our antigen and a real-world fragment of swine flu. This suggests you can build vaccines out of anything you want as long as they 'look' like the real thing in three dimensions."

While we might be a long way from taking our vaccines orally and at room-temperature, Associate Professor Miles says this proof-of-concept study shows exciting promise.

"We have some further work to do in making these vaccines work across larger populations and against other bugs and possibly cancer," he said. "But what we have now is a promising platform for synthetic vaccine production. We hope these new concepts and advances will help make a significant contribution to health world-wide."

Explore further: Scientists create world's first synthetic, non-biologic vaccine

Related Stories

Scientists create world's first synthetic, non-biologic vaccine

March 13, 2018
Researchers from Cardiff University have created the world's first synthetic, non-biologic vaccine.  

Engineered virus has artificial amino acid allowing it to serve as a vaccine

December 2, 2016
(Medical Xpress)—A team of researchers at Peking University has developed a new type of vaccine that they claim may allow for a new approach to generating live virus vaccines which could conceivably be adapted to any type ...

Global vaccine injury system needed to improve public health, expert argues in JAMA

February 8, 2017
A vital race is on in laboratories across the globe to develop a vaccine for the Zika virus. However, even if a vaccine were available today, many of the world's poorest people would not be able to receive it due to political ...

Recommended for you

Lung-on-a-chip simulates pulmonary fibrosis

May 25, 2018
Developing new medicines to treat pulmonary fibrosis, one of the most common and serious forms of lung disease, is not easy.

Reconstructing Zika's spread

May 24, 2018
The urgent threat from Zika virus, which dominated news headlines in the spring and summer of 2016, has passed for now. But research into how Zika and other mosquito-borne infections spread and cause epidemics is still very ...

Tick bite protection: New CDC study adds to the promise of permethrin-treated clothing

May 24, 2018
The case for permethrin-treated clothing to prevent tick bites keeps getting stronger.

Molecular network boosts drug resistance and virulence in hospital-acquired bacterium

May 24, 2018
In response to antibiotics, a gene regulation network found in the bacterium Acinetobacter baumannii acts to boost both virulence and antibiotic resistance. Edward Geisinger of Tufts University School of Medicine and colleagues ...

Past use of disinfectants and PPE for Ebola could inform future outbreaks

May 24, 2018
Data from the 2014 Ebola virus outbreak at two Sierra Leone facilities reveal daily usage rates for disinfectant and personal protective equipment, informing future outbreaks, according to a study published May 24, 2018 in ...

Early lactate measurements appear to improve results for septic patients

May 24, 2018
On October 1, 2015, the United States Centers for Medicare and Medicaid Services (CMS) issued a bundle of recommendations defining optimal treatment of patients suffering from sepsis, a life-threatening response to infection ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.