Lopsided ear function can lead to lopsided brain development

March 13, 2018, Public Library of Science
The left-hand panel shows a movement trace of a normal mouse (top) and an inner ear mutant mouse (bottom), viewed from above; the mutant mouse circles repetitively. The right-hand panel illustrates the findings of the paper; lopsided loss of function in the left ear of the embryo (top) leads to long-term asymmetry in the brain (bottom left), which in turn manifests as a preference for circling in a counterclockwise direction (bottom right). Credit: Antoine et al., 2018

Left-right differences in ear function have been found to lead to asymmetric brain development that affects the preferred direction of turning movement in mice. In a multi-national study publishing 13 March in the open access journal PLOS Biology, Michelle Antoine, Jean Hébert, and their colleagues at the Albert Einstein College of Medicine investigated the potential link between increased incidences of atypical asymmetries in motor behavior and defects in inner ear function.

Motor asymmetry is the preferential use of a limb or a body part on one side of the body, handedness or footedness being commonly known examples. Despite a long-standing fascination with asymmetries in left-right function by the public and scientific community alike, very little is known about the causes of functional brain asymmetry in mammals.

The authors used which have a genetic defect that affects the vestibular or balance-related function of their inner ear; these mice tend to "circle" repetitively, but their preferred direction of turning varies between individuals. Based on a series of genetic, surgical, and pharmacological experiments, researchers showed that even short-term imbalance of degenerating inner ear function in mice can lead to long-lasting asymmetries in the relative activity levels of two key neurotransmitters in the brain - glutamate and dopamine.

Asymmetry in these two neuronal signaling pathways correlated with the animal's preferred spontaneous turning direction, such that the motor-dominant hemisphere had higher levels of glutamate neurotransmission and lower levels of dopamine signaling.

Furthermore, the authors could lessen or reverse the preferred turning direction by experimentally manipulating the levels of a specific signaling pathway (involving a protein called ERK) that integrates both glutamate and dopamine neurotransmission.

The authors also showed that their findings in mice could extend to humans with normal ear function. In experiments in which human subjects underwent brain imaging during stimulation to each ear, the ear with the weakest vestibular brain response correlated with the motor-dominant hemisphere, as measured by the participant's handedness.

Functional brain asymmetry seems to arise independently of other anatomical asymmetries such as the positioning of the heart and liver, and no clear mechanism is known; by showing that early in sensory input from the ear can permanently shape the asymmetric distribution of brain function, this study provides an important new insight.

Explore further: Brain asymmetry improves processing of sensory information

More information: Antoine MW, Zhu X, Dieterich M, Brandt T, Vijayakumar S, McKeehan N, et al. (2018) Early uneven ear input induces long-lasting differences in left-right motor function. PLoS Biol 16(3): e2002988. doi.org/10.1371/journal.pbio.2002988

Related Stories

Brain asymmetry improves processing of sensory information

February 6, 2014
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information.

Images of the brain refute a theory of the 1960s on the domain of language

December 20, 2017
In 1968, when there were no techniques to observe how the brain worked in vivo, the neurologist Norman Geschwind discovered that a region of the temporal lobe in deceased persons, the planum temporale, was larger in the left ...

A dominant hemisphere for handedness and language?

July 4, 2014
Through an innovative approach using a large psychometric and brain imaging database, researchers in the Groupe d'Imagerie Neurofonctionnelle (CNRS/CEA/Université de Bordeaux) have demonstrated that the location of language ...

Recommended for you

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.