Making new memories is a balancing act

March 14, 2018, Salk Institute
Credit: CC0 Public Domain

Those of us who can't resist tourist tchotchkes are big fans of suitcases with an expandable compartment. Now, it turns out the brain's capacity for storing new memories is expandable, too, with limitations.

Salk Institute scientists and collaborators at the University of Texas at Austin and the University of Otago, in New Zealand, found that connections in the not only expand as needed in response to learning or experiencing new things, but that others will shrink as a result. The work, which could shed light on conditions in which memory formation is impaired, such as depression or Alzheimer's disease, appeared in Proceedings of the National Academy of Sciences on February 20, 2018.

"The brain has the capacity to store an immense amount of at the synapses between nerve cells," says Professor Terrence Sejnowski, who is head of the Salk's Computational Neurobiology Laboratory and co-corresponding author of the new paper. "So although we already knew where memories are stored, this work helps clarify how they are stored."

Every time you look at something new, or have a new thought, millions of brain cells communicate that information to each other in the form of electrical and chemical signals across tiny gaps called synapses. It was known that synapses can grow larger—that is, become more likely to release chemicals (or release more of them) to better transmit information to receiving neurons. However, little is known about normal function and disruptions in synaptic communication, the latter of which is a hallmark of many neuropsychiatric conditions and memory impairment.

Previously, Sejnowski used 3D computer reconstructions and modeling to uncover that the brain's is 10 times greater than had been thought. In the new work, he and collaborators in Texas and New Zealand decided to further investigate brain function by stimulating a region in rodents' brains important for , called the hippocampus. This allowed the researchers to mimic, under very controlled conditions, the effect that a new experience would have on a brain region common to mammals.

Connections in the brain not only expand as needed in response to learning or experiencing new things, but others will shrink as a result. In this 3-D model, over time, the information-sending part of one neuron, which will appear as the horizontal white structure in the video, makes synaptic connections (blue) with the information-receiving part of another neuron, which will appear in green. Credit: UT Austin/Salk Institute

The researchers imaged the hippocampal brain samples using electron microscopy and analyzed the resulting data. They expected to see synapses get bigger, which they are known to do in a process of learning known as long-term potentiation. What they did not expect—but found—was that, as some synapses got bigger, others got smaller.

"It's an intuitive idea that as we learn something new, synapses strengthen and get bigger," says Sejnowski. "This shows that there is a balance: some get stronger, some get weaker."

Sejnowski says that the results make sense because if synapses only got bigger, they'd reach a limit and no new information could be stored, but this is the first time the connection has been demonstrated. The work also reveals that by increasing the range of synaptic sizes, the overall goes up—you can have more synapses, large and small.

Interestingly, when the team quantitatively estimated how much synaptic information could be stored in two different areas of the hippocampus—the dentate gyrus and CA1—the amounts varied dramatically, which may be related to differences in their functions.

"We hope to explore many additional questions such as whether the increase in information storage is accompanied by a compensatory decrease in information storage capacity in adjoining layers, and how long the temporary increase in storage capacity at particular lasts," says Cailey Bromer, a Salk research associate and first author of the study.

Explore further: Neuroscientists discover a cellular pathway that encodes memories by strengthening specific synapses

More information: Cailey Bromer et al. Long-term potentiation expands information content of hippocampal dentate gyrus synapses, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1716189115

Related Stories

Neuroscientists discover a cellular pathway that encodes memories by strengthening specific synapses

February 8, 2018
MIT neuroscientists have uncovered a cellular pathway that allows specific synapses to become stronger during memory formation. The findings provide the first glimpse of the molecular mechanism by which long-term memories ...

Memory capacity of brain is 10 times more than previously thought

January 20, 2016
Salk researchers and collaborators have achieved critical insight into the size of neural connections, putting the memory capacity of the brain far higher than common estimates. The new work also answers a longstanding question ...

Proteins involved in brain's connectivity are controlled by multiple checkpoints

August 31, 2017
University of Bristol scientists have found that the delivery of a group of proteins involved in the information flow between the brain's nerve cells to the synapse is much more sophisticated than previously suspected. The ...

Mice offer a window into sleep's role in memory

March 24, 2017
Sleep provides essential support for learning and memory, but scientists do not fully understand how that process works on a molecular level. What happens to synapses, the connections between neurons, during sleep that helps ...

A specific neurotransmitter receptor supports optimal information processing in the brain

March 30, 2015
Researchers have been fascinated for a long time by learning and memory formation, and many questions are still open. Bochum-based neuroscientists Prof Dr Denise Manahan-Vaughan and Dr Hardy Hagena have discovered a key building ...

RNG105/Caprin1 is essential for long-term memory formation

November 21, 2017
The research group of Associate Professor Nobuyuki Shiina of the National Institute for Basic Biology have revealed that the function of RNG105 (aka Caprin1) is essential for the formation of long-term memory.

Recommended for you

Left, right and center: mapping emotion in the brain

June 19, 2018
According to a radical new model of emotion in the brain, a current treatment for the most common mental health problems could be ineffective or even detrimental to about 50 percent of the population.

Often overlooked glial cell is key to learning and memory

June 18, 2018
Glial cells surround neurons and provide support—not unlike hospital staff and nurses supporting doctors to keep operations running smoothly. These often-overlooked cells, which include oligodendrocytes and astrocytes, ...

Electrically stimulating the brain may restore movement after stroke

June 18, 2018
UC San Francisco scientists have improved mobility in rats that had experienced debilitating strokes by using electrical stimulation to restore a distinctive pattern of brain cell activity associated with efficient movement. ...

Neuroscientists map brain's response to cold touch

June 18, 2018
Carnegie Mellon University neuroscientists have mapped the feeling of cool touch to the brain's insula in a mouse model. The findings, published in the June 15 issue of Journal of Comparative Neurology, provide an experimental ...

iReadMore app improves reading ability of stroke patients

June 18, 2018
A new smart app designed to improve the reading ability of people who have suffered a stroke provides 'significant' improvements, a UCL study has found.

Brain matures faster due to childhood stress

June 15, 2018
Stress in early childhood leads to faster maturation of certain brain regions during adolescence. In contrast, stress experienced later in life leads to slower maturation of the adolescent brain. This is the outcome of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.