Mice, motor learning, and making decisions

March 1, 2018 by Sarah Haurin, Duke University
Advanced imaging techniques allow neuroscientists to better understand how the motor outputs we observe are created in the brain. Credit: Duke Research Blog

Early understandings of the brain viewed it as a black box that takes sensory input and generates a motor response, with the in-between functioning of the brain as a mystery.

Takaki Komiyama of the University of California, San Diego is curious about the relationship between , motor output, and what happens in between. "What fascinates me the most is the flexibility of this dynamic… this flexibility of the relationship between the environment and the is the key element of my research," Komiyama said to an audience of Duke neuroscience researchers.

Komiyama and his lab have designed experiments to watch how the brain changes as mice learn. Specifically, they train mice to complete a lever-pushing task in response to an and then use an advanced imaging technique to watch the activity of specific populations of neurons.

Komiyama based his experimental design on a hallmark of motor learning: An "expert" mouse will hear the auditory stimulus and produce a that is exactly the same each time. Komiyama's team was curious about how these reproducible movements are learned.

Focusing on the , called M1 for short, Komiyama observed many different neuronal firing patterns as the mouse learned the motion of lever-pushing. As the mouse ventured into "expert" territory, usually after about two weeks of training, this variation was replaced by an activity pattern that is the same from trial to trial. In addition to being consistent, this final pattern starts earlier after the stimulus and takes less time to complete than earlier patterns. In other words, during learning, the brain tries out different pathways for the goal action and then converges on the most efficient way of producing the desired response.

Mice, motor learning, and making decisions
The mice’s internal biases prevented them from achieving better results in the visual stimuli task. Credit: Duke Research Blog

Komiyama then turned his focus to M2, the secondary motor cortex, which he observed to be one of the last areas activated during early learning trials but one of the first activated during late trials. To test M2's role in learning, Komiyama inactivated the region in trained mice and subjected them to the same stimulus-motor response trial.

The mice with inactivated M2's missed more trials, took longer to initiate movement, and completed the lever pushing less efficiently. Essentially, the mice behaved as if they had never learned the movement, suggesting that M2 is crucial for coordinating learned motor behavior.

In addition to identifying crucial patterns of motor learning, Komiyama and his team are working to understand decision making. After designing a more complex lever-pushing task that required pushing a joystick in different directions depending on the visual stimulus, Komiyama observed the mice's accuracy plateaued around 60%.

Komiyama hypothesized that this pattern of inaccuracy could be explained by the mice's internal biases from previous trials' outcomes. He designed a statistical model that incorporated the previous trials' outcomes. With further testing, the model accurately predicted the mice's wrong choices.

The (PPC) is an area of the brain that has been found to be involved in decision making tasks. Komiyama observed neurons in the PPC that predicted which direction the mice would push the joystick. In addition to being active before the motor response during trials, these neurons were also active in the time between trials.

Seeing this as a neural correlate for internal biases, Komiyama hypothesized that inactivating this region would decrease the influence of bias on the mice's choices. Sure enough, inactivating the PPC led to more accurate responses in the , thus confirming the PPC as a neural source of bias.

Explore further: Motor cortex shown to play active role in learning movement patterns

Related Stories

Motor cortex shown to play active role in learning movement patterns

May 4, 2014
Skilled motor movements of the sort tennis players employ while serving a tennis ball or pianists use in playing a concerto, require precise interactions between the motor cortex and the rest of the brain. Neuroscientists ...

Learning impacts how the brain processes what we see

July 13, 2015
From the smell of flowers to the taste of wine, our perception is strongly influenced by prior knowledge and expectations, a cognitive process known as top-down control.

Neuroscientists map brain cell activity that occurs during the delay between sensation and action

September 8, 2016
A UC Santa Barbara researcher studying how the brain uses perception of the environment to guide action has a new understanding of the neural circuits responsible for transforming sensation into movement.

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Coupling of movement and vision

June 22, 2017
In a study published in Cell, Georg Keller and his group shed light on neural circuits in the cortex that underlie the integration of movement and visual feedback. They identified a mechanism in the visual cortex responsible ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Recommended for you

A dual-therapy approach to boost motor recovery after a stroke

June 20, 2018
Paralysis of an arm and/or leg is one of the most common effects of a stroke. But thanks to research carried out by scientists at the Defitech Foundation Chair in Brain-Machine Interface and collaborators, stroke victims ...

Absence epilepsy—when the brain is like 'an orchestra without a conductor'

June 20, 2018
At first, the teacher described her six-year-old student as absentminded, a daydreamer. The boy was having difficulty paying attention in class. As the teacher watched the boy closely, she realized that he was not daydreaming. ...

Researchers investigate changes in white matter in mice exposed to low-frequency brain stimulation

June 19, 2018
A team of researchers at the University of Oregon has learned more about the mechanism involved in mouse brain white matter changes as it responds to stimulation. In their paper published in Proceedings of the National Academy ...

Cell type and environment influence protein turnover in the brain

June 19, 2018
Scientists have revealed that protein molecules in the brain are broken down and replaced at different rates, depending on where in the brain they are.

Left, right and center: mapping emotion in the brain

June 19, 2018
According to a radical new model of emotion in the brain, a current treatment for the most common mental health problems could be ineffective or even detrimental to about 50 percent of the population.

Often overlooked glial cell is key to learning and memory

June 18, 2018
Glial cells surround neurons and provide support—not unlike hospital staff and nurses supporting doctors to keep operations running smoothly. These often-overlooked cells, which include oligodendrocytes and astrocytes, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.