Phase I HIV vaccine trial to begin

March 28, 2018, University of Massachusetts Medical School

A Phase I clinical trial testing the safety of vaccines that might have the potential to prevent HIV infection will begin this month at four sites in the United States, marking the latest step in a three-decade quest at UMass Medical School to harness the power of DNA vaccines in addressing a major global health threat. The study, which is the result of research by Shan Lu, MD, PhD, professor of medicine and biochemistry & molecular pharmacology, will also monitor the vaccine's ability to create an immune response against HIV. It is being run by the HIV Vaccine Trials Network (HVTN).

Dr. Lu has been working on the research and development of DNA vaccines—vaccines that use synthetic DNA to create HIV specific immune responses after vaccination—with support from the National Institutes of Health. The innovative vaccine design depends on using limited DNA sequences from HIV as an initial, priming immunization for the immune response, followed by a boost with a protein vaccine matching the proteins made by the DNA. To enhance the immune response, the protein vaccine is combined with the adjuvant GLA-SE. This approach will be used with one group of study participants. In a separate group of participants, the DNA and protein vaccines will be given together at the same time. The approach of using both DNA and protein vaccines, whether in a series or together, activates both antibody and cell-mediated immune responses, both of which may be needed for an effective HIV vaccine.

"We've made significant progress in developing a cocktail of antigens capable of producing antibodies using our prime-boost method," said Lu, whose project to standardize and validate production of the vaccine was funded by the NIH. The prime-boost method of giving vaccines is thought to be crucial to initiating an immune response to HIV that would be able to last for years.

Beginning this month, clinical researchers at the HIV Vaccine Trials Network, headquartered at the Fred Hutchinson Cancer Research Center in Seattle, will enroll healthy volunteers at the University of Pennsylvania in Philadelphia, the University of Alabama-Birmingham, Case Western Reserve University in Cleveland and Fenway Health in Boston.

Lu believes this type of vaccine strategy, which includes a mix of proteins identified from different viral subtypes of HIV, is the most likely to stimulate broad immune responses, offering the best hope for an HIV vaccine. The vaccines being used in the trial include five DNA components and four proteins to stimulate potent and broad immune responses.

"The immune system uses B-cells to produce the antibodies that fight viral invaders," Lu said. "The HIV DNA bits drag the B-cells out of sleep. We then expose the B-cells to specific HIV proteins, which are some of the most susceptible parts of the virus, so they can start producing antibodies that target these vulnerabilities. This prime and boost combination gives the immune system the added jolt it needs to produce antibodies to fight the virus."

The vaccine will be tested in healthy volunteers for the safety and tolerability of the regimen, as well as to the vaccines, over six to 12 months. The trial will be double blinded—neither researchers nor study volunteers will know who receives the vaccines or the placebo—until the study is completed. In fact, the study will enroll volunteers who are evaluated to be at low risk for HIV exposure, and volunteers will receive frequent HIV prevention counseling. This initial study, while an exciting step, will not evaluate whether the vaccine strategy actually protects vaccine recipients from becoming HIV infected.

In the last decade, Lu received funding under major HIV vaccine programs such as HIVRAD and IPCAVD from the National Institute of Allergy and Infectious Diseases to develop and produce an optimized HIV vaccine to be used in human clinical . Waisman Biomanufacturing, a contract facility affiliated with the University of Wisconsin-Madison, assisted Lu by performing manufacturing process and release assay development along with production of clinical trial materials for the current HIV regime developed by UMMS. Success from the current trial is a key step in preparing for manufacturing the vaccines for a potential large scale clinical trial.

Historically, vaccines have been tremendously successful in halting the advance of infectious diseases such as smallpox, polio, measles and yellow fever. By presenting foreign antigens to the immune system in healthy individuals, vaccines are able to stimulate production of antibodies and cells ready to fight the pathogen prior to infection. Similarly, HIV vaccines represent the best long-term hope for ending the HIV pandemic.

Explore further: Why the latest shingles vaccine is more than 90 percent effective

Related Stories

Why the latest shingles vaccine is more than 90 percent effective

March 7, 2018
A new study has shown how the body's immune system responds to the new shingles vaccine, Shingrix, making it more than 90% effective at protecting against the virus.

Past HIV vaccine trials reveal new path to success

March 19, 2014
A multi-national research team led by Duke Medicine scientists has identified a subclass of antibodies associated with an effective immune response to an HIV vaccine.

Prime-boost H7N9 influenza vaccine concept promising in clinical trial

December 10, 2015
In clinical trials, several candidate H7N9 pandemic influenza vaccines made from inactivated viruses have been shown to be safe and to generate an immune response. However, scientists believe for practical use, these potential ...

Another potential obstacle to developing an HIV vaccine

December 27, 2011
A clinical trial testing a candidate HIV vaccine known as the STEP study was halted in September 2007 after interim analysis indicated that the vaccine did not work.

DNA-based Zika vaccine is safe and effective at inducing immune response

October 4, 2017
A new generation DNA-based Zika vaccine demonstrated both safety and ability to elicit an immune response against Zika in humans in a phase 1 clinical trial conducted through a partnership among the Perelman School of Medicine ...

Clinical trial of chikungunya vaccine opens

November 24, 2015
An experimental vaccine to protect against the mosquito-borne illness chikungunya is being tested in a Phase 2 trial sponsored by the National Institutes of Health. Results from an initial trial of the vaccine, which was ...

Recommended for you

Study shows how HIV is shielded from immune attack

July 10, 2018
Scientists from UNSW Sydney and the UK have discovered that the human immunodeficiency virus (HIV) hijacks a small molecule from the host cell to protect itself from being destroyed by the host's immune system.

Out-of-pocket costs put HIV prevention drug out of reach for many at risk

July 4, 2018
Public health officials are expanding efforts to get the HIV prevention pill into the hands of those at risk, in a nationwide effort to curb infections. But the officials are hitting roadblocks—the drug's price tag, which ...

New simulation tool predicts how well HIV-prophylaxis will work

June 14, 2018
A new mathematical simulation approach predicts the efficacy of pre- and post-exposure prophylaxis (PrEP) medications, which help prevent HIV infection. The framework, presented in PLOS Computational Biology by Sulav Duwal ...

Many at risk for HIV despite lifesaving pill

June 11, 2018
Multiple barriers may stop high-risk individuals from accessing an HIV drug that can reduce the subsequent risk of infection, according to a new University of Michigan study.

Active HIV in large white blood cells may drive cognitive impairment in infected mice

June 7, 2018
Macrophages, large white blood cells that engulf and destroy potential pathogens, harbor active viral reserves that appear to play a key role in impaired learning and memory in mice infected with a rodent version of HIV. ...

HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains

June 4, 2018
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world. The findings were reported ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.