Genomic analysis unravels complexities of the most common form of lymphoma and enables personalized treatment

April 30, 2018, Dana-Farber Cancer Institute
Hodgkin lymphoma, nodular lymphocyte predominant (high-power view) Credit: Gabriel Caponetti, MD./Wikipedia/CC BY-SA 3.0

The majority of patients with diffuse large B cell lymphoma (DLBCL) can be treated effectively. However, people whose disease recurs face a shortage of good options, especially because the disease is driven by a complicated mix of genetic alterations. Genomic analysis by scientists at Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard now offers a better framework for understanding the disease's many forms, which will help to predict individual patient outcomes and guide personalized treatment.

Analyzing 304 patient samples, the study showed that DLBCL tumors can be divided into five genetic subtypes, says Margaret Shipp, MD, chief of Dana-Farber's Hematologic Neoplasia division and director of the Lymphoma Program of the Dana-Farber/Harvard Cancer Center.

These genetic subtypes can help in identifying likely therapeutic targets, some of which can be inhibited by drugs that already are approved for other conditions or in clinical trials, says Shipp, who, along with Broad Institute's Gad Getz, is co-corresponding author on a Nature Medicine paper presenting the work.

"These genetic signatures also clearly suggest that we want to think about using a combination of targeted agents, because in DLBCL, combinations of occur together in specific subtypes," she says.

DLBCL is the most common form of lymphoma among adults, with roughly 25,000 people diagnosed with the disease each year in the United States. About 60% of can be treated successfully with a combination of four chemotherapies plus a targeted drug that inhibits a B cell surface protein. "But the other very substantial fraction of patients develops recurrent disease, and their treatment options are far less successful," says Shipp.

Current clinical tests do a relatively good job of predicting which patients with DLBCL can be treated effectively with standard treatments, but the tests do not offer insights into how treatments could be improved for other patients. The Dana-Farber/Broad collaboration is among several research groups bringing genomic tools to this task. An earlier effort led by National Cancer Institute (NCI) scientists established a widely used "cell of origin" classification scheme for DLBCL, which employed RNA profiling to categorize tumor cells by stages of normal B-cell development.

Unlike previous DLBCL research efforts, Shipp says, the Dana-Farber/Broad collaboration sought to integrate data on three types of genetic alterations that can drive tumors-mutations to genes, changes in gene copy numbers and chromosomal rearrangements-and define previously unappreciated disease substructure.

"Specific genes that were perturbed by mutations could also be altered by changes in gene copy numbers or by chromosomal rearrangements, underscoring the importance of evaluating all three types of genetic alterations," Shipp notes. "Most importantly, we saw that there were five discrete types of DLBCL that were distinguished one from another on the basis of the specific types of genetic alterations that occurred in combination."

The investigators followed up to examine these tumor subtypes by RNA data associated with cell of origin. They found that each of the two major cell-of-origin subtypes could be split into separate categories with distinct genetic signatures. An additional subtype defined by TP53 gene alterations and associated genomic instability was unrelated to cell of origin. The team then went on to discover clear links between given genetic subtypes and how patients responded to standard treatment.

"We feel this research opens the door to a whole series of additional investigations to understand how the combinations of these genetic alterations work together, and then to use that information to benefit patients with targeted therapies," says Shipp.

The study underlined the high genetic diversity in DLBCL—for instance, the median number of genetic driver alterations in individual tumors was 17. "That large number of alterations tells us that we need to understand the complexity of the genetic signature, because it's unlikely that simply focusing on one genetic alteration will be enough to target therapeutically," Shipp points out. "By understanding the genetic basis of that heterogeneity, we will be able to apply more specifically targeted agents that have the highest likelihood of impacting the right pathways in the right patients."

She and her collaborators are now working on creating a clinical tool to identify these genetic signatures in patients. Studying related biological mechanisms in the lab, the team also is developing clinical trials that will match patients with given genetic signatures to treatment that includes appropriate targeted agents.

Dana-Farber's Bjoern Chapuy and Broad's Chip Stewart and Andrew Dunford are co-first authors on the paper, and Broad's Gad Getz is co-corresponding author. Clinical investigators from the German High-Grade Lymphoma Study Group and the Mayo Clinic also participated. "This was very much a collaborative effort of a multidisciplinary group of investigators who approached the problem with complementary skill sets," Shipp emphasizes. "This multidisciplinary model, which is increasingly used to investigate cancers, will bring practical benefits for patients."

Explore further: Study revises molecular classification for most common type of lymphoma

More information: Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes, Nature Medicine (2018).

Related Stories

Study revises molecular classification for most common type of lymphoma

April 11, 2018
In a new study, researchers identified genetic subtypes of diffuse large B-cell lymphoma (DLBCL) that could help explain why some patients with the disease respond to treatment and others don't. The study, led by researchers ...

Scientists identify genetic drivers of common lymphoma

October 31, 2017
An international team of scientists has pinpointed the genetic drivers of diffuse large B-cell lymphoma—the most common type of blood cancer—and determined the genes' clinical significance. The study, published in the ...

Attacking lymphoma at the source

March 22, 2018
Non-Hodgkin lymphomas are cancers that affect white blood cells of the immune system called B-lymphocytes, or B cells. Like cells in all cancers, the B cells begin to grow out of control, creating tumors in the lymph nodes, ...

Precision medicine advances pediatric brain tumor diagnosis and treatment

January 19, 2017
Precision medicine - in which diagnosis and treatments are keyed to the genetic susceptibilities of individual cancers - has advanced to the point where it can now impact the care of a majority of children with brain tumors, ...

Genetic alterations in treatment-resistant metastatic breast cancer found to be distinct from those in primary tumors

December 9, 2016
Drug-resistant, estrogen-fueled breast cancers that have spread beyond their initial site often have different genetic alterations than the original tumors, according to a large-scale tumor-tissue analysis led by Dana-Farber ...

Researchers identify genetic drivers of most common form of lymphoma

October 5, 2017
Lymphoma is the most common blood cancer, but the diagnosis belies a wildly diverse and little understood genetic foundation for the disease that hampers successful treatment.

Recommended for you

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.