New imaging method identifies how normal and cancer cells move and adapt

April 20, 2018, Stony Brook University
A human breast cancer cell (green) in a zebrafish blood vessel (magenta) during part of the metastatic process. Captured from a still of a moving image, a cancer cell mimics the behavior of immune cells, where the cell ‘rolls’ thru the vessels. Credit: T. Liu et al./Science 2018

An international team of scientists including David Q. Matus, Ph.D., and Benjamin L. Martin, Ph.D., in the Department of Biochemistry and Cell Biology and Stony Brook University Cancer Center researchers, have developed a new cell imaging technology combining lattice light sheet microscopy (LLSM) and adaptive optics (AO) to create high-resolution "movies" of cells in their 3-D environment that also captures subcellular processes. Published in Science, the research reveals a technology that shows the phenotypic diversity within cells across different organisms and developmental stages and in conditions such as mitosis, immune processes and in metastases.

The AO-LLSM technique offers scientists investigating cancer and other diseases new insights into how operate and adapt to different physiological environments.

In the paper, the paper, titled "Observing the Cell in Its Native State: Imaging Subcellular Dynamics in Multicellular Organisms," Professors Matus and Martin used AO-LLSM to capture and visualize the behavior of human injected into zebrafish vasculature.

They successfully captured time lapse movies at high resolution of breast cancer cells mimicking the cell behaviors characteristic of (leukocytes). These behaviors include rolling, crawling and invading out of the vasculature. To view the cell moving images created by the AO-LLSM technique, see this video:

"By observing and characterizing these behaviors, such as cancer cells adopting leukocyte-like behaviors, we may be able to discover new avenues to target the spread or dissemination of metastatic cancer cells," says Matus.

Explore further: For aggressive breast cancer in the brain, researchers clarify immune response

More information: "Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms" Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aaq1392

Related Stories

For aggressive breast cancer in the brain, researchers clarify immune response

April 17, 2018
Once it has begun to spread in the body, approximately half of patients with an aggressive breast cancer type will develop cancer in the brain. Researchers at the University of North Carolina Lineberger Comprehensive Cancer ...

Blood flow is a major influence on tumor cell metastasis

April 9, 2018
Scientists have long theorized that blood flow plays an integral role in cancer metastasis. But new research testing this long-held hypothesis in zebrafish and humans confirms that the circulatory blood flow impacts the position ...

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Researchers discover new approach to stimulate an immune response against tumor cells

January 30, 2018
New drugs that activate the immune system to target cancer cells have improved the lives of many patients with cancer. However, immunotherapies are not effective in all patients, and the success of these therapies depends ...

Cannibal cells may limit cancer growth

July 11, 2017
Cell cannibalism in tumour samples has been observed for over a century, yet this unusual behaviour is not well studied. New research led by scientists at the Babraham Institute, Cambridge reveals a new mechanism driving ...

Recommended for you

Byproducts of 'junk DNA' implicated in cancer spread

August 14, 2018
The more scientists explore so-called "junk" DNA, the less the label seems to fit.

Doctors may be able to enlist a mysterious enzyme to stop internal bleeding

August 14, 2018
Blood platelets are like the sand bags of the body. Got a cut? Platelets pile in to clog the hole and stop the bleeding.

Artificial placenta created in the laboratory

August 14, 2018
In order to better understand important biological membranes, it is necessary to explore new methods. Researchers at Vienna University of Technology (Vienna) have succeeded in creating an artificial placental barrier on a ...

Using DeepMind's neural network learning system to diagnose eye diseases

August 14, 2018
Three institutions working together have applied DeepMind's neural network learning system to the task of discovering and diagnosing eye diseases. Moorfields Eye Hospital has been working with Google's DeepMind Health subsidiary ...

3-D printed biomaterials for bone tissue engineering

August 13, 2018
When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. ...

Artificial intelligence platform screens for acute neurological illnesses

August 13, 2018
An artificial intelligence platform designed to identify a broad range of acute neurological illnesses, such as stroke, hemorrhage, and hydrocephalus, was shown to identify disease in CT scans in 1.2 seconds, faster than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.