Scientists identify connection between dopamine and behavior related to pain and fear

April 19, 2018, University of Maryland School of Medicine
Ball-and-stick model of the dopamine molecule, a neurotransmitter that affects the brain's reward and pleasure centers. Credit: Jynto/Wikipedia

Scientists at the University of Maryland School of Medicine have for the first time found direct causal links between the neurotransmitter dopamine and avoidance—behavior related to pain and fear.

Researchers have long known that dopamine plays a key role in driving behavior related to pleasurable goals, such as food, sex and social interaction. In general, increasing dopamine boosts the drive toward these stimuli. But dopamine's role in allowing organisms to avoid negative events has remained mysterious.

The new study establishes for the first time that dopamine is central in causing behavior related to the avoidance of specific threats. The work was published today in the journal Current Biology.

"This study really advances what we know about how dopamine affects aversively motivated behaviors," said Joseph F. Cheer Ph.D., a professor in the UMSOM Department of Anatomy & Neurobiology and the study's corresponding author. "In the past, we thought of dopamine as a neurotransmitter involved in actions associated with the pursuit of rewards. With this new information we can delve into how dopamine affects so many more kinds of motivated behavior."

To better understand the role that dopamine plays in this process, Dr. Cheer and his colleagues, including principal author Jennifer Wenzel, Ph.D., a fellow in Dr. Cheer's laboratory, studied rats, focusing on a particular brain area, the . This brain region plays a crucial role in linking the need or desire for a given reward—food, sex, etc. - with the motor response to actually obtain that reward.

To study the animals under natural conditions, they used optogenetics, a relatively new technique in which specific groups of neurons can be controlled by exposure to light. In this case, Dr. Cheer's group used a blue laser to stimulate genetically modified rats whose dopamine neurons could be controlled to send out more or less dopamine. In this way, they were able to see how affected the animals' behavior. The principal advantage of this approach: he could control dopamine levels even as the animals moved freely in their environment.

The researchers subjected the animals to small electric shocks, but also taught the animals how to escape the shocks by pressing a small lever. Using optogenetics, they controlled the amount of dopamine released by neurons in the nucleus accumbens. Animals with high levels of dopamine in this brain region learned to avoid a shock more quickly and more often than animals that had a lower level of dopamine in this region.

Dr. Cheer says that this indicates that dopamine causally drives animals to avoid unpleasant or painful situations and stimuli. The results greatly expand the role that dopamine plays in driving .

The researchers also examined the role that endocannabinoids play in this process. Endocannabinoids, brain chemicals that resemble the active ingredients in marijuana, play key roles in many brain processes. Here, Dr. Cheer and his colleagues found that endocannabinoids essentially open the gate that allows the to fire. When the researchers reduced the level of endocannabinoids, the were much less likely to move to avoid shocks.

Dr. Cheer argues that the research sheds light on brain disorders such as post-traumatic stress disorder and depression. In depression, patients feel unable to avoid a sense of helplessness in the face of problems, and tend to ruminate rather than act to improve their situation. In PTSD, patients are unable to avoid an overwhelming sense of fear and anxiety in the face of seemingly low-stress situations. Both disorders, he says, may involve abnormally low levels of dopamine, and may be seen on some level as a failure of the avoidance system.

In both depression and PTSD, doctors already sometimes treat patients with medicine to increase and there are now clinical trials testing use of endocannabinoid drugs to treat these conditions. Dr. Cheer suggests that this approach may need to be used more often, and should certainly be studied in more detail.

Explore further: Dopamine, drugs, and depression

Related Stories

Dopamine, drugs, and depression

February 1, 2018
The neurotransmitter dopamine plays a major role in mental illnesses like substance abuse disorders and depressive disorders, as well as a more general role in reward and motivational systems of the brain. But there are still ...

Both sides now: Brain reward molecule helps learning to avoid unpleasant experience, too

February 29, 2016
The brain chemical dopamine regulates how mice learn to avoid a disagreeable encounter, according to new research from the Perelman School of Medicine at the University of Pennsylvania. "We know that dopamine reinforces 'rewarding' ...

High-fat diet alters reward system in rats

May 29, 2017
Exposure to high-fat diet from childhood may increase the sensitivity of the dopamine system later in adulthood, according to a study in male rats published in eNeuro. The research describes potential mechanisms that, if ...

Amphetamine abuse disrupts development of mouse prefrontal cortex

January 8, 2018
Recreational drug use during adolescence may disrupt development of an understudied part of the prefrontal cortex, according to a study of male mice published in eNeuro.

Intracellular dopamine receptor function may offer hope to schizophrenia patients

December 9, 2016
Dopamine is a chemical in the brain that plays an important role in controlling movement, emotion and cognition. Dopamine dysfunction is believed to be one of the causes of disorders like Schizophrenia, Tourette's syndrome, ...

Recommended for you

Neurons with good housekeeping are protected from Alzheimer's

December 17, 2018
Some neurons in the brain protect themselves from Alzheimer's with a cellular cleaning system that sweeps away toxic proteins associated with the disease, according to a new study from Columbia University and the University ...

Measuring speed of mental replay of movies gives new insight into accessing memories

December 17, 2018
Researchers have discovered that 'fully detailed' memories are stored in the /, but people access this information at different speeds and levels of detail, with people accessing memories 'forward' that is recalling older ...

Tuning arousal to boost information transmission in the brain

December 17, 2018
Columbia neural engineers discover a mechanism by which the locus coeruleus modulates information processing in the thalamus; their findings of how sensory information is encoded in the healthy brain may lead to new treatments ...

Gently stroking babies before medical procedures may reduce pain processing

December 17, 2018
Researchers found that gently stroking a baby seems to reduce activity in the infant brain associated with painful experiences. Their results, appearing December 17 in the journal Current Biology, suggest that lightly brushing ...

Tiny implantable device short-circuits hunger pangs, aids weight loss

December 17, 2018
More than 700 million adults and children worldwide are obese, according to a 2017 study that called the growing number and weight-related health problems a "rising pandemic."

Discovery of a novel way synapses can regulate neuronal circuits

December 17, 2018
The fundamental process of information transfer from neuron to neuron occurs through a relay of electrical and chemical signaling at the synapse, the junction between neurons. Electrical signals, called action potentials, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.