Old drug provides promising new avenue for treatment of MND

May 17, 2018, University of Liverpool

An international study led by biochemists at the University of Liverpool has shown that the drug-molecule ebselen can correct many of the toxic characteristics of a protein that causes some cases of hereditary motor neurone disease (MND).

MND is an incurable, progressive disease that attacks the nerves controlling movement so muscles no longer work. MND affects about 5000 people in the UK at any one time and present treatment options have only a modest effect in improving the patient's quality of life.

Inherited MND is a rare form of the disease (5-10% of total cases) that runs in families. Around 20% of hereditary MND cases are caused by mutations in a gene which codes for a called SOD1. When the SOD1 gene is mutated, the protein assembly process malfunctions and steps are missed out. This makes the SOD1 protein structurally unstable leading to formation of protein 'clumps' in the neurones, causing them to die.

In a paper published in Nature Communications, scientists from the Universities of Liverpool (UK), Florence (Italy) and Wollongong (Australia) used state-of-the-art crystallography, mass-spectrometry and in-cell NMR technologies to search for a drug molecule which could 'correct' the SOD1 assembly line.

They found that ebselen, a drug which was discovered in the 1980s and has been investigated as a potential treatment for a variety of nervous system disorders, can effectively restore several important steps in the SOD1 assembly process including folding, dimerization and zinc binding.

Dr. Gareth Wright, an MND researcher at the University of Liverpool, said: "This discovery has the potential to prevent the accumulation of SOD1 into the large aggregates we see within the motor neurons of effected individuals. If we can stop that, we might be able to stop the neurons dying."

Professor Samar Hasnain, a structural biologist at the University of Liverpool, added: "The next step is to test ebselen in settings more accurately resembling human neuronal cells and optimising it so that it can become useful as a drug for ."

Commenting on the study, Dr Brian Dickie, Director of Research Development at the Motor Neurone Disease Association, said: "A causal link between the SOD1 gene and certain forms of hereditary motor neuron was established a quarter of a century ago. It is very encouraging to see new therapeutic strategies starting to emerge from the considerable advances in scientific understanding that have occurred in recent years."

Explore further: Large aggregates of ALS-causing protein might actually help brain cells

More information: Michael J. Capper et al, The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation, Nature Communications (2018). DOI: 10.1038/s41467-018-04114-x

Related Stories

Large aggregates of ALS-causing protein might actually help brain cells

April 16, 2018
Scientists at the UNC School of Medicine have made a significant advance in the understanding of the complex and fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease.

Discovery may offer hope to Parkinson's disease patients

May 22, 2017
The finding of a common protein abnormality in these degenerative diseases supports a hypothesis among experts that abnormal deposition of proteins in many neurodegenerative disorders reflects an early change in these proteins.

Aggregated protein in nerve cells can cause ALS

May 4, 2016
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord. Researchers at Umeå University have discovered that, when injected ...

Study highlights gene that could lead to therapies for Amyotrophic Lateral Sclerosis

October 4, 2016
Researchers from Ben-Gurion University of the Negev (BGU) have published a new study that describes a novel molecular mechanism that could lead to the development of new therapies for Amyotrophic Lateral Sclerosis (ALS). ...

New ALS discovery: Scientists reverse protein clumping involved in neurodegenerative conditions

September 22, 2016
In the quest to understand the driving forces behind neurodegenerative diseases, researchers in recent years have zeroed in on clumps of malfunctioning proteins thought to kill neurons in the brain and spinal cord by jamming ...

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.