Human MAIT cells sense the metabolic state of enteric bacteria

May 9, 2018, University of Basel
Clusters of MAIT cells in human blood and colon biopsies, resulting from high-dimensional bioinformatics analysis. Subpopulations of these defense cells group into colored 'continents' according to the markers expressed by the cells. Credit: Department of Biomedicine, Tobias Rutishauser

A little-explored group of immune cells plays an important role in the regulation of intestinal bacteria. Changing metabolic states of the microbes have an effect on defense cells at different stages of alert or rest, as researchers from the Department of Biomedicine at the University and University Hospital of Basel report in the journal Mucosal Immunology.

It is known that the metabolites of bacteria influence the composition and function of resident within the gut. These defense include MAIT cells (mucosal-associated invariant T cells), which were only recently discovered and are naturally abundant in the gastrointestinal mucosa, skin liver and blood. These cells are specialized in recognizing the microorganisms living in every human being and monitoring their activities.

Different populations in gut vs. blood

A group led by Prof. Dr. Gennaro De Libero from the University of Basel and PD Dr. Petr Hruz from the University Hospital of Basel have investigated how MAIT cell activation and function is influenced by bacterial metabolites produced in normal colon. The study revealed that distinct populations of MAIT cells are located in the human intestinal mucosa. These populations were identified in gut biopsies using highly innovative methods and bioinformatics analyses.

Result: MAIT cells are present in variable states of alert and rest, in accordance with the metabolic state of intestinal bacterial flora. The defense cells are most frequently stimulated by bacteria grown under low-oxygen and slow growth-phase - conditions such as those found in the large intestine. MAIT cells can then directly influence local inflammation but also tissue healing and cell fitness in the gut by producing different messenger substances.

"Our results show that there is a fine balance occurring in the gut between microbial growth conditions, the production of stimulating metabolites and the response of MAIT defense cells," state the researchers. The metabolism of microbes in the intestine constantly adapts to changing host conditions. By detecting the of enteric bacteria, MAIT cells can potentiate their function in mucosal immunosurveillance.

Explore further: Type 1 diabetes and the microbiota—MAIT cells as biomarkers and new therapeutic targets

More information: Mathias Schmaler et al, Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation, Mucosal Immunology (2018). DOI: 10.1038/s41385-018-0020-9

Related Stories

Type 1 diabetes and the microbiota—MAIT cells as biomarkers and new therapeutic targets

October 10, 2017
Together with colleagues from AP-HP Necker–Enfants Malades Hospital in Paris, scientists from the Cochin Institute (CNRS / INSERM / Paris Descartes University) have discovered that the onset of type 1 diabetes is preceded ...

Research shows extremely limited diversity among one group of immune cells and uncovers a new population

November 19, 2014
In an investigation of a specific group of immune cells, researchers at A*STAR identified a limited repertoire of receptors that recognize bacterial targets. This finding led to the further discovery of a previously undetected ...

T cell population altered in patients with type 2 diabetes and/or obesity

March 9, 2015
As obesity rates rise, so does the incidence of type 2 diabetes (T2D). In obese individuals and those with obesity-induced T2D, there is an accumulation of immune cells within adipose tissue that results in a low level of ...

Bacterial superantigens turn our immune cells to the dark side

June 20, 2017
A subpopulation of immune cells that normally fend off pathogens can turn against the host during certain infections, a new study publishing on June 20 in the open access journal PLOS Biology reveals.

Researchers find more uses for immune system's 'Swiss army knife'

June 23, 2016
Oxford University research has found that a little-studied and relatively unknown part of the human immune system could be twice as important as previously thought.

Unearthing immune responses to common drugs

February 6, 2017
Australian researchers are a step closer to understanding immune sensitivities to well-known, and commonly prescribed, medications.

Recommended for you

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Immune health maintained by meticulously ordered DNA

October 15, 2018
Walter and Eliza Hall Institute researchers have revealed how immune health is maintained by the exquisite organisation skills of a protein called Pax5.

New immunotherapy targeting blood-clotting protein

October 15, 2018
Normally, the blood protein fibrin does not enter the brain. But in several neurological disorders, the blood-brain barrier—which keeps large molecules in the blood from entering the brain—becomes abnormally permeable, ...

Enzyme that triggers autoimmune responses from T-cells in patients with MS found

October 11, 2018
A team of researchers from Switzerland, the U.S. and Spain has isolated an enzyme that triggers an autoimmune response from T-cells in patients with MS. In their paper published in the journal Science Translational Medicine, ...

Scientists reveal new cystic fibrosis treatments work best in inflamed airways

October 11, 2018
A new UNC School of Medicine study shows that two cystic fibrosis (CF) drugs aimed at correcting the defected CFTR protein seem to be more effective when a patient's airway is inflamed. This is the first study to evaluate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.