Researchers find key players for building and repairing the brain

May 16, 2018, Canadian Association for Neuroscience

Research by Dr. Freda Miller and her team at the Hospital for Sick Children and the University of Toronto has determined how brain stem cells and the environment they live within collaborate to build brain circuits during development, discoveries that have led to a better understanding of neurodevelopmental disorders in children. The Miller lab and her basic research collaborators work closely with their clinical colleagues to harness this information and develop new approaches for treating brain injury. These results were presented at the 2018 Canadian Neuroscience Meeting, in Vancouver, May 15th, 2018.

During development, the mammalian brain starts life as nothing more than a collection of that then must generate the neurons and glial that form the complex network of connections required for proper brain functioning and cognition. One cause of neurodevelopmental disorders such as autism spectrum disorder is thought to be the failure of stem cells to correctly build the brain. Dr. Miller's team investigates how stem cells accomplish this task, and to understand how this process goes wrong in neurodevelopmental disorders. Since these same brain stem cells also persist into adulthood, this has led to the idea that it might be possible to manipulate these brain-resident stem cells to behave as they did during development, and in so doing to promote brain repair. Importantly, recent work from Dr. Miller and her collaborators suggests that this may indeed be the case, thereby identifying a new approach for treating the damaged or degenerating human brain.

"Neural stem cells are like "parent" cells that generate their children, the neurons and glia that build brain circuits, in a precisely controlled fashion in response to signals from their environment. These signals ensure that there are enough stem cells to build the brain, to make the correct amounts of neurons and at the right time and place in the developing brain, and that some stem cells persist into adulthood where they can participate in brain repair. If we can understand what these signals are, and how stem cells respond under normal circumstances, then that information will not only allow us to understand what happens in such as but will also provide us with the information we need to activate stem cells in the mature brain to promote repair" says Freda Miller.

To understand and their environment, Dr. Miller is using approaches that range from stem cell biology to transcriptomics and proteomics that identify the proteins and RNA molecules that enable stem cells to build the brain and computational modeling, with the idea that understanding brain development and repair requires an interdisciplinary and highly collaborative approach.

"The key to doing the best science is to ask big questions such as "how do you built functional brain circuits during development" or "how can you repair an injured " and then to seek out collaborators who are willing to work with you to answer those questions in an integrative and interdisciplinary fashion. This type of high-level collaboration is equally important when your discovery research unveils a potentially novel therapeutic strategy. This collaborative approach has been the key to all of our major discoveries" says Freda Miller.

Explore further: Researchers clarify the identity of brain stem cells

Related Stories

Researchers clarify the identity of brain stem cells

May 4, 2018
The human nervous system is a complex structure that sends electrical signals from the brain to the rest of the body, enabling us to move and think. Unfortunately, when brain cells are damaged by trauma or disease they don't ...

Stem cell divisions in the adult brain seen for the first time

February 8, 2018
Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons ...

Creation of new brain cells may be limited, mouse study shows

February 7, 2018
It used to be that everyone knew that you are born with all the brain cells you'll ever have. Then UC San Francisco's Arturo Alvarez-Buylla, Ph.D., and other neuroscientists discovered in birds and mice that stem cells in ...

Diabetes drug metformin makes brain cells grow

July 5, 2012
The widely used diabetes drug metformin comes with a rather unexpected and alluring side effect: it encourages the growth of new neurons in the brain. The study reported in the July 6th issue of Cell Stem Cell also finds ...

Brain stimulation plus adult neural stem cells may speed stroke recovery

January 24, 2018
Electrically stimulating implanted adult stem cells may someday speed stroke recovery, according to preliminary research presented at the American Stroke Association's International Stroke Conference 2018, a world premier ...

Recommended for you

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

Weight loss success linked with active self-control regions of the brain

October 18, 2018
New research suggests that higher-level brain functions have a major role in losing weight. In a study among 24 participants at a weight-loss clinic, those who achieved greatest success in terms of weight loss demonstrated ...

How the brain makes rapid, fine adjustments in motor activity

October 18, 2018
Short-term motor learning appears not to require physical change in the brain Brain's premotor cortex may use a 'neural scratch pad' to calculate fine adjustments Brain can try different things in simulation without 'screwing ...

Scientists uncover how rare gene mutation affects brain development and memory

October 18, 2018
Researchers from the University of California, Irvine School of Medicine, have found that a rare gene mutation alters brain development in mice, impairing memory and disrupting the communication between nerve cells. They ...

Electrical properties of dendrites help explain our brain's unique computing power

October 18, 2018
Neurons in the human brain receive electrical signals from thousands of other cells, and long neural extensions called dendrites play a critical role in incorporating all of that information so the cells can respond appropriately.

Study pinpoints what makes human neurons unique

October 18, 2018
Human neurons are much larger than those of model organisms mice and rats, so it's been unclear whether it's size that makes a difference in our brain's computational power. Now, in a study appearing October 18 in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.