Scientists reveal likely cause of childhood leukaemia

May 21, 2018, Institute of Cancer Research

A major new analysis reveals for the first time the likely cause of most cases of childhood leukaemia, following more than a century of controversy about its origins.

Professor Mel Greaves from The Institute of Cancer Research, London, assessed the most comprehensive body of evidence ever collected on (ALL) - the most common type of childhood cancer.

His research concludes that the disease is caused through a two-step process of genetic mutation and exposure to infection that means it may be preventable with treatments to stimulate or 'prime' the immune system in infancy.

The first step involves a genetic mutation that occurs before birth in the foetus and predisposes children to leukaemia—but only 1 per cent of children born with this genetic change go on to develop the disease.

The second step is also crucial. The disease is triggered later, in childhood, by exposure to one or more common infections, but primarily in children who experienced 'clean' childhoods in the first year of life, without much interaction with other infants or older children.

Acute lymphoblastic leukaemia is particularly prevalent in advanced, affluent societies and is increasing in incidence at around 1 per cent per year.

Professor Greaves suggests childhood ALL is a paradox of progress in modern societies—with lack of microbial exposure early in life resulting in immune system malfunction.

In a landmark paper published in Nature Reviews Cancer today, Professor Greaves compiled more than 30 years of research—his own and from colleagues around the world—into the genetics, cell biology, immunology, epidemiology and animal modelling of . The research in his lab at The Institute of Cancer Research (ICR) was largely funded by the charities Bloodwise and The Kay Kendall Leukaemia Fund.

Professor Greaves challenged previous reports of possible environmental causes, such as ionising radiation, electricity cables, electromagnetic waves or man-made chemicals—arguing that none are supported by robust evidence as major causes.

Instead, he presented strong evidence for a 'delayed infection' theory for the cause of ALL, in which early infection is beneficial to prime the immune system, but later infection in the absence of earlier priming can trigger leukaemia.

Professor Greaves suggests that childhood leukaemia, in common with type I diabetes, other autoimmune diseases and allergies, might be preventable if a child's immune system is properly 'primed' in the first year of life—potentially sparing children the trauma and life-long consequences of chemotherapy.

His studies of identical twins with ALL showed that two 'hits' or mutations were required. The first arises in one twin in the womb but produces a population of pre-malignant cells that spread to the other twin via their shared blood supply. The second mutation arises after birth and is different in the two twins.

Population studies in people together with animal experiments suggest this second genetic 'hit' can be triggered by infection—probably by a range of common viruses and bacteria. In one unique cluster of cases investigated by Professor Greaves and colleagues in Milan, all cases were infected with flu virus.

Researchers also engineered mice with an active leukaemia-initiating gene, and found that when they moved them from an ultra-clean, germ-free environment to one that had common microbes, the mice developed ALL.

Population studies have found that early exposure to infection in infancy such as day care attendance and breast feeding can protect against ALL, most probably by priming the immune system. This suggests that childhood ALL may be preventable.

Professor Greaves is now investigating whether earlier exposure to harmless 'bugs' could prevent leukaemia in mice—with the possibility that it could be prevented in children through measures to expose them to common but benign microbes.

Professor Greaves emphasises two caveats. Firstly, while patterns of exposure to common infections appear to be critical, the risk of childhood leukaemia, like that of most common cancers, is also influenced by inherited genetic susceptibility and chance. Secondly, infection as a cause applies to ALL specifically—other rarer types including infant leukaemia and probably have different causal mechanisms.

Professor Mel Greaves, Director of the Centre for Evolution and Cancer at The Institute of Cancer Research, London, said:

"I have spent more than 40 years researching childhood leukaemia, and over that time there has been huge progress in our understanding of its biology and its treatment—so that today around 90 per cent of cases are cured. But it has always struck me that something big was missing, a gap in our knowledge—why or how otherwise healthy children develop leukaemia and whether this cancer is preventable.

"This body of research is a culmination of decades of work, and at last provides a credible explanation for how the major type of childhood leukaemia develops. The research strongly suggests that ALL has a clear biological cause, and is triggered by a variety of infections in predisposed children whose immune systems have not been properly primed. It also busts some persistent myths about the causes of leukaemia, such as the damaging but unsubstantiated claims that the disease is commonly caused by exposure to electro-magnetic waves or pollution.

"I hope this research will have a real impact on the lives of children. The most important implication is that most cases of childhood leukaemia are likely to be preventable. It might be done in the same way that is currently under consideration for autoimmune disease or allergies—perhaps with simple and safe interventions to expose infants to a variety of common and harmless 'bugs'." Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"This research has been something of a personal, 30-year quest for Professor Mel Greaves—who is one of the UK's most influential and iconic cancer researchers. His work has cut through the myths about childhood leukaemia and for the first time set out a single unified theory for how most cases are caused.

"It's exciting to think that, in future, childhood leukaemia could become a preventable disease as a result of this work. Preventing would have a huge impact on the lives of children and their families in the UK and across the globe."

Explore further: Scientists map the genetic evolution of childhood leukaemia

More information: Mel Greaves, A causal mechanism for childhood acute lymphoblastic leukaemia, Nature Reviews Cancer (2018). DOI: 10.1038/s41568-018-0015-6

Related Stories

Scientists map the genetic evolution of childhood leukaemia

April 5, 2018
The key genetic events responsible for initiating the early stages of a type of childhood leukaemia have been identified by scientists at The Institute of Cancer Research, London. Insights into the 'founder' genetic mutation ...

New types of blood cancer discovered in children

June 7, 2016
Through a detailed study of leukaemia cells from more than 200 children, a research group at Lund University in Sweden has discovered two new types of childhood leukaemia. Using next-generation sequencing technology (NGS), ...

Power lines don't raise risk of leukaemia in children

February 7, 2014
(Medical Xpress)—Children who live near overhead power lines in early life do not have a greater risk of developing childhood leukaemia, researchers from the Childhood Cancer Research Group at the University of Oxford have ...

Cancer Research UK launches trial of new drug to treat acute childhood leukaemia

January 27, 2012
Cancer Research UK’s Drug Development Office has opened the first trial of a new type of drug to treat children aged from six months to 18 years with acute leukaemia, who are no longer responding to treatment.

New insights into blood cancer that develops before birth

July 8, 2016
Researchers from the Medical Research Council (MRC) Centre for Regenerative Medicine at the University of Edinburgh have identified the cells responsible for a form of leukaemia that can develop while a baby is in the womb. ...

Recommended for you

Some brain tumors may respond to immunotherapy, new study suggests

December 10, 2018
Immunotherapy has proved effective in treating a number of cancers, but brain tumors have remained stubbornly resistant. Now, a new study suggests that a slow-growing brain tumor arising in patients affected by neurofibromatosis ...

A code for reprogramming immune sentinels

December 10, 2018
For the first time, a research team at Lund University in Sweden has successfully reprogrammed mouse and human skin cells into immune cells called dendritic cells. The process is quick and effective, representing a pioneering ...

Study finds higher risk of breast cancer for women after giving birth

December 10, 2018
Younger women who have recently had a child may have a higher risk of breast cancer than their peers of the same age who do not have children, according to a large-scale analysis co-led by a University of North Carolina Lineberger ...

Researchers develop personalized medicine tool for inherited colorectal cancer syndrome

December 10, 2018
An international team of researchers led by Huntsman Cancer Institute (HCI) at the University of Utah (U of U) has developed, calibrated, and validated a novel tool for identifying the genetic changes in Lynch syndrome genes ...

Study shows key enzyme linked to therapy resistance in deadly lung cancer

December 10, 2018
Researchers at The University of Texas MD Anderson Cancer Center have identified a link between an enzyme tied to cancer formation and therapy resistance in patients with epidermal growth factor receptor (EGFR)-mutant non-small ...

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.