Artificial gene defect reveals target to fight genetic disease

June 12, 2018, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
Immunofluorescence staining of HAP1 cells lacking FANCC gene, treated for 24h with MMC, stained for BRCA1, 53BP1 and DAPI. Credit: CeMM/Lydia Robinson-Garcia

Fanconi anemia (FA) is caused by defective genes for DNA-repair leading to bone marrow failure, developmental abnormalities and increased cancer risk. Using genome-wide genetic approaches, researchers at CeMM systematically screened for the loss of an additional gene that could rescue the disease—and found it. The corresponding protein turned out to be a potential target that could be therapeutically exploited for FA. The study was published in Nature Communications.

DNA is essential for a healthy organism. Every day, tens of thousands of DNA strands are damaged. Hence, it is not surprising that a broad variety of repair mechanisms developed in the course of evolution enables to quickly react and patch up the affected DNA strands. How important those repair mechanisms are becomes obvious when they fail—patients with FA are unable to repair DNA crosslinks, which, in most cases, eventually leads to cancer. So far, no curative therapy has been found for this disease.

Damaged DNA and its complex repair mechanisms comprise the research focus of the group of Joanna Loizou, principal investigator at CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and finding new molecular targets to fight FA is one of their goals. In their latest study, published in Nature Communications , the researchers aimed to find additional that genetically interact with the diseased FA genes and are essential for the manifestation of the disease, and thereby, if destroyed, restore the ability of the cell to repair DNA crosslinks. The research project was performed in collaboration with scientists from the University of Cambridge, from the Leiden University Medical Center, the University of California, the University of Toronto and the group of Jörg Menche at CeMM.

The scientists, with CeMM Ph.D. student Lydia Garcia-Robinson and former post doc of Loizou's lab Georgia Velimezi as shared first authors, deployed a novel genetic screen to search for synthetic viable interactions, using a genome-wide loss-of-function approach that uses insertional mutagenesis achieved via a gene-trap approach, on special lines of FA-defective cells that only possess one copy of each gene. With this method, they scored a bulls eye—the researchers found that an enzyme that removes ubiquitin, an important regulator of protein activity and half-life, causes FA gene deficiencies.

Karyotype of HAP1 cells lacking FANCC gene, treated for 24h with MMC. QR = quadri radial chromosomal crosslink. Credit: CeMM/KaryoLogic

When the enzyme, called USP48, was artificially destroyed by CRISPR/Cas9, the FA-deficient cells were less sensitive to DNA-damaging compounds and showed an increased clearance of DNA damage. With further molecular analysis of the underlying processes, the researchers were able to show that the inactivation of USP48 in FA-deficient cells even restored a nearly error-free repair of the damaged DNA.

"Our results show that USP48 inactivation reduces chromosomal instability of FA-defective cells," Joanna Loizou explains. "This highlights a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for Fanconi Anemia. To develop USP48 inhibitory molecules could be a new potential approach to alleviate the symptoms of FA patients."

Explore further: Tracing the footprints of a tumor—genomic 'scars' allow cancer profiling

More information: Georgia Velimezi et al, Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48, Nature Communications (2018). DOI: 10.1038/s41467-018-04649-z

Related Stories

Tracing the footprints of a tumor—genomic 'scars' allow cancer profiling

May 9, 2018
Mutations driving cancer development leave behind specific 'scars," so-called mutational signatures, in the genome. In principle, they allow for profiling of the cancer type and its development—but the noisy environment ...

Study identifies new gene mutation associated with defective DNA repair and Fanconi anemia

July 10, 2017
Fanconi anemia is a rare genetic disease characterized by hematologic symptoms that include low platelet count and unusually large red blood cells. Mutations in nearly 20 genes have been identified as causative for Fanconi ...

New potential target identified to fight acute myeloid leukemia

May 21, 2018
AML is not a single disease. It is a group of leukemias that develop in the bone marrow from progenitors of specialized blood cells, the so-called myeloid cells. Rapidly growing and dividing, these aberrant cells crowd the ...

Recommended for you

First immunotherapy success for triple-negative breast cancer

October 21, 2018
There is new hope for people with an aggressive type of breast cancer, as an immunotherapy trial shows for the first time that lives can be extended in people with triple-negative breast cancer.

Healthy diets linked to better outcomes in colorectal cancer

October 20, 2018
Colorectal cancer patients who followed healthy diets had a lower risk of death from colorectal cancer and all causes, even those who improved their diets after being diagnosed, according to a new American Cancer Society ...

Why some cancers affect only young women

October 19, 2018
Among several forms of pancreatic cancer, one of them specifically affects women, often young. How is this possible, even though the pancreas is an organ with little exposure to sex hormones? This pancreatic cancer, known ...

Scientists to improve cancer treatment effectiveness

October 19, 2018
Together with researchers from the University of Nantes and the University of Reims Champagne-Ardenne in France, experts from the National Research Nuclear University MEPhI have recently developed a quantum dot-based microarray ...

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.