New study shows how gut immune cells are kept in control

June 22, 2018, Instituto de Medicina Molecular
In circulating white blood cells (left side) the "batteries" or mitochondria (in green) have a stronger signal -- than in intestinal white blood cells, that are in a 'low energy mode' (right side). Blue indicates the cell's nucleus. Credit: Špela Konjar, iMM.

Every day, the human gut works on a fine-tuned balance that ensures the retention of essential nutrients while preventing infection by potential armful microbes. Contributing to this surveillance system is a specialised group of immune cells that are held back due to unknown reasons, although they have many characteristics of activated cells. Now, a new study led by Marc Veldhoen, group leader at Instituto de Medicina Molecular João Lobo Antunes (iMM; Portugal) shows how these cells are kept under control. The work published now in Science Immunology reveals that the mitochondria of these cells have a different composition that reduces their energy production capacity, keeping them in a controlled activated mode. This knowledge can give rise to new diagnostics and treatments for conditions affecting the digestive tract such as gut inflammation or infections.

The skin and intestines contain a special population of white cells called intraepithelial lymphocytes. It has been largely unknown how the activity of these cells is controlled in a state that is neither fully activated nor at rest. Using imaging and biochemical experiments, the research group led by Marc Veldhoen has now shown this is partly due to differences in the cells' . These energy-producing structures are present insideall cells. "We hypothesised that these gut-resident white blood cells may use energy in a different way. It was surprising to see that the detection of mitochondria gave a very different picture than seen in other white blood cells, forming the basis of a new hypothesis that the mitochondria themselves are different in these cells," explains Marc Veldhoen.

Using high magnification electron microscopy, the researchers observed that the mitochondria were present in abundance but seem to be different upon staining for light microscopy. Next, they studied the functionality of the mitochondria. "When we analysed these structures in detail, we found changes in the lipids that form a layer separating the mitochondria from the rest of the cell," says S?pela Konjar, joint first author of the study, adding that "these changes make the "batteries" work differently, as if they are in a "low energy mode."

When the lipid landscape was purposely altered, the researchers confirmed a change in the activation potential of the cells. "Our results showed that lipids in the mitochondria of these cells could alter their metabolic state and change their activity. When the mitochondrial lipids could not be arranged similarly to those found in other white blood cells, the cells could not be properly activated when needed," explains Marc Veldhoen. The researcher further explains: "This knowledge allows us to investigate how we can inhibit these when they are too active and cause damage, such as in gut inflammations, or how we can activate them more in cases of gut infections. Furthermore, the detection of mitochondria could be a diagnostic marker for the activation state of intestinal ."

Explore further: Impaired energy production may explain why brain is susceptible to age-related diseases

More information: Konjar, S., Frising, U.C., Ferreira, C., Hinterleitner, R., Mayassi, T., Zhang, Q., Blankenhaus, B., Haberman, N., Loo, Y., Guedes, J., Baptista, M., Innocentin, S., Stange, J., Strathdee, D., Jabri, B., Veldhoen, M. (2018) Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci. Immunol. 3, eaan2543. doi - 10.1126/sciimmunol.aan2543

Related Stories

Impaired energy production may explain why brain is susceptible to age-related diseases

May 29, 2018
Defective energy production in old neurons might explain why our brains are so prone to age-related diseases. Salk researchers used a new method to discover that cells from older individuals had impaired mitochondria—the ...

New warning system discovered in the immune defence

January 15, 2018
Researchers at Linköping University in Sweden have discovered a previously unknown warning system that contributes to the body's immune system. Mitochondria in the white blood cells secrete a web of DNA fibres that raises ...

Researchers discover key link between mitochondria and cocaine addiction

December 20, 2017
For years, scientists have known that mitochondria in brain cells play a role in brain disorders such as depression, bipolar disorder, anxiety and stress responses. But recently, scientists at the University of Maryland School ...

Recommended for you

Paracetamol use in infancy is linked to increased risk of asthma in some teenagers

September 17, 2018
Children who take paracetamol during their first two years of life may be at a higher risk of developing asthma by the age of 18, especially if they have a particular genetic makeup, according to new research presented at ...

Cord blood clue to respiratory diseases

September 15, 2018
New research has found children born in the last three months of the year in Melbourne may have a greater risk of developing respiratory diseases such as asthma.

FRESH program combines basic science with social benefits for women at risk of HIV

September 14, 2018
A program established by investigators from the Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard is addressing the persistently elevated risk of HIV infection among young women in South Africa from ...

Dietary fiber reduces brain inflammation during aging

September 14, 2018
As mammals age, immune cells in the brain known as microglia become chronically inflamed. In this state, they produce chemicals known to impair cognitive and motor function. That's one explanation for why memory fades and ...

Research reveals link between immunity, diabetes

September 14, 2018
When it comes to diet-induced obesity, your immune system is not always your friend.

Immune response mechanism described for fate determination of T cells

September 13, 2018
After a pathogen infects the body, the immune system responds with a remarkable—and remarkably complicated—cascade of events.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.