Waves move across the human brain to support memory

June 7, 2018, Columbia University School of Engineering and Applied Science
Illustration showing the average direction of traveling wave propagation across the human brain. Credit: Joshua Jacobs/Columbia Engineering

The coordination of neural activity across widespread brain networks is essential for human cognition. Researchers have long assumed that oscillations in the brain, commonly measured for research purposes, brain-computer interfacing, and clinical tests, were stationary signals that occurred independently at separate brain regions. Biomedical engineers at Columbia Engineering have discovered a new fundamental feature of brain oscillations: they actually move rhythmically across the brain, reflecting patterns of neuronal activity that propagate across the cortex. The study was published today in Neuron.

"We also found that these traveling moved more reliably when subjects performed well while performing a working memory task," says Joshua Jacobs, assistant professor of biomedical engineering and senior author of the paper. "This indicates that traveling waves are significant for memory and cognition—our findings show that these oscillations are an important mechanism for large-scale coordination in the human ."

Jacobs' team studied direct brain recordings from 77 epilepsy patients, who had had electrodes placed in widespread brain areas for seizure mapping. For Jacobs' study, the patients were asked to perform a memory task. In examining the brain recordings from these patients, the researchers found large brain regions in individual patients with "theta" and "alpha" oscillations, which are linked to cognition, at specific frequencies between 2 to 15 Hz. These oscillations indicate that the neurons in this region rhythmically activated to support cognition, but the specific role performed by these oscillations has remained unclear.

Animated brain showing the average direction of traveling wave propagation across the human brain. Credit: Joshua Jacobs/Columbia Engineering

The group used two novel methods to analyze the data. First, they measured individual oscillations simultaneously from multiple electrodes instead of using the more common method of measuring each brain wave separately from individual locations. Second, they developed a new analytical framework that enabled them to measure the instantaneous movement of each traveling wave. Using this approach, they found that the oscillations were actually traveling waves that moved across the cortex at 0.25-0.75 m/s.

"The traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well," says Honghui Zhang, a postdoc in Jacobs' lab and the paper's lead author.

The study's findings demonstrate that the brain uses neuronal oscillations to propagate information across different regions, and that, by organizing neural processes across space and time, traveling waves play a significant role in supporting brain connectivity.

Example traveling waves observed from the surface of one patient's brain as the patient performed memory retrieval. Credit: Joshua Jacobs/Columbia Engineering

"Our research indicates that, when a researcher records a brain , is being communicated across the brain," says Jacobs. "So, in addition to opening new directions for fundamental brain research on connectivity and memory, our work suggests that clinicians can measure patterns of traveling waves to characterize an individual's brain connectivity. Traveling waves are like ocean waves, moving across the surface of the cortex, and may also provide a new type of signal that can be used for brain-computer interfaces."

"This recent work from the Jacobs lab is incredibly exciting," says Kareem Zaghloul, an investigator at the National Institutes of Health's Functional and Restorative Neurosurgery Unit. "The study of traveling waves opens up new directions for brain research, as it now allows us to consider not only what the brain is representing but how information moves around the brain "

Jacobs is currently exploring how traveling waves are relevant for other behaviors, including spatial navigation and long-term memory. His group is also developing new methodologies to test whether other types of brain oscillations, such as those at faster frequencies, also behave as traveling waves.

Explore further: Neuroscientists show deep brain waves occur more often during navigation and memory formation

More information: "Theta and alpha oscillations are traveling waves in the human neocortex" DOI: 10.1016/j.neuron.2018.05.019

Related Stories

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

Synchronized brain waves in distant regions combine memories

January 29, 2016
Humans have the remarkable ability to integrate information from multiple memories and infer indirect relationships. How does our brain support this important function? Neuroscientists from the Donders Institute at Radboud ...

New insights into how the human brain processes scent

June 6, 2017
Theta oscillations, a type of rhythmic electrical activity that waxes and wanes four to eight times per second, may play a fundamental role in processing scent in the human brain, according to a new study recently published ...

Patterns of brain activity reorganize visual perception during eye movements

May 25, 2015
Scientists measuring brain activity have found that in many regions, such as the sensory or motor cortex, activity sometimes oscillates at different frequencies, forming wave-like patterns. Despite the fact that such oscillations ...

'Waves' of neural activity give new clues about Alzheimer's

September 6, 2017
While unconscious during deep sleep, slow-wave neuron activity travels across the cerebral cortex. This phenomenon is related to the consolidation of memory. A European project called SloW Dyn, led by Spanish scientists, ...

Recommended for you

Silence is golden when it comes to how our brains work

June 18, 2018
It's the comparative silence between the firing spikes of neurons that tells what they are really up to, scientists report.

Observing brain plasticity during cello training

June 15, 2018
Music acquisition provides an excellent model of neural plasticity, and has become a hot research subject in neurology. Music performance provides an unmatched array of neural complexities revealing how neural networks are ...

New discovery about the brain's water system may prove beneficial in stroke

June 15, 2018
Water is transported from the blood into the brain via an ion transporter, according to a new study on mice conducted at the University of Copenhagen. If the mechanism can be targeted with medicine, it may prove relevant ...

Study shows how intensive instruction changes brain circuitry in struggling readers

June 14, 2018
The early years are when the brain develops the most, forming neural connections that pave the way for how a child—and the eventual adult—will express feelings, embark on a task, and learn new skills and concepts.

When emotional memories intrude, focusing on context could help, study finds

June 14, 2018
When negative memories intrude, focusing on the contextual details of the incident rather than the emotional fallout could help minimize cognitive disruption and redirect the brain's resources to the task at hand, suggests ...

The neurons that rewrite traumatic memories

June 14, 2018
Memories of traumatic experiences can lead to mental health issues such as post-traumatic stress disorder (PTSD), which can destroy a person's life. It is currently estimated that almost a third of all people will suffer ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
not rated yet Jun 08, 2018
This approach begins to open up how propagation of mental activity operates in the individual brain. This is a microcosm of the transmission of thought processes for historical humanity. http://thingumbob...-in.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.