Synchronized brain waves in distant regions combine memories

January 29, 2016
Synchronized brain waves in distant regions combine memories
Figure 1. Theta oscillations from the hippocampus synchronize with the medial prefrontal cortex to link two separate memories. Credit: Current Biology

Humans have the remarkable ability to integrate information from multiple memories and infer indirect relationships. How does our brain support this important function? Neuroscientists from the Donders Institute at Radboud University have now shown that rhythmic brain waves, called theta oscillations, engage and synchronize the brain regions that support the integration of memories. The results were published in the journal Current Biology on January 28.

Activity in the is not constantly high or low, but rather organized in waves that come and go. For one type of wave, called theta, activity goes up and down a couple of times per second. "We know from previous work that the theta rhythm is important for , and also that temporal and frontal brain regions interact when you combine memories" says Christian Doeller, senior author of the study. "Here we bring these two observations together, by showing that are crucial for memory integration."

Signals from deep inside the brain

There was one problem: in healthy individuals, brain oscillations can only be measured from outside the brain. This complicates measurements of signals from structures deep inside the brain, like the hippocampus: a key brain region for memory. "We had to use advanced computational techniques to reconstruct oscillatory signals from the hippocampus" says lead researcher Alexander Backus. "Using these hippocampal signals, we found that the amount of theta oscillations increased whenever someone succeeds in linking two separate memories". In addition, the researchers saw that theta oscillations from hippocampus were synchronized with the (mPFC), a brain region involved in storing knowledge networks.

Communication through synchronization

According to Backus, distant are able to communicate by synchronizing their theta waves, enabling them to integrate previously stored memories. The findings are important for certain diseases linked to memory integration. For instance in , memories from a past traumatic event are mistakenly linked to everyday life situations. The results of this study might bring us closer to the neurobiological mechanisms underlying such conditions.

According to Doeller, the key observations of the study also have a big impact on our understanding of higher cognitive functions: "The ability to combine information from different memories is what allows us to make decisions based on past experience. Ultimately, this is how we acquire knowledge about our world."

Explore further: Theta oscillations coordinate navigation and movement

More information: Alexander R. Backus et al. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration, Current Biology (2016). DOI: 10.1016/j.cub.2015.12.048

Related Stories

Theta oscillations coordinate navigation and movement

October 13, 2015
Using light pulses, Berlin scientists have recently managed to control theta oscillations in mouse brain. They discovered that these brain waves coordinate movement - enabling signaling between distant brain regions – a ...

Different memory resolutions map onto different brain locations

October 20, 2015
Neuroscientists from Radboud University's Donders Institute have shown that memories of the same events co-exist at different resolutions in the brain. Coarse and fine memory scales are distributed across different parts ...

Brain consolidates memory with three-step brainwave

September 22, 2015
Our long-term memory is consolidated when we sleep. Short-term memory traces in the hippocampus, an area deep in the brain, are then relocated to more outer parts of the brain. An international team of neuroscientists, among ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

'Inner GPS' study may aid diagnosis of brain diseases

November 2, 2015
A new Dartmouth study sheds light on brain cells in our "inner GPS," which may improve understanding of memory loss and wandering behavior in people with Alzheimer's and other neurodegenerative diseases.

Neural states affect learning

May 7, 2014
Theta-band activity in hippocampus after an event seems to be crucial for learning. A study at the University of Jyväskylä also proved that the absence of theta facilitated learning a simple task while training during theta ...

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.