Synchronized brain waves in distant regions combine memories

January 29, 2016, Radboud University
Synchronized brain waves in distant regions combine memories
Figure 1. Theta oscillations from the hippocampus synchronize with the medial prefrontal cortex to link two separate memories. Credit: Current Biology

Humans have the remarkable ability to integrate information from multiple memories and infer indirect relationships. How does our brain support this important function? Neuroscientists from the Donders Institute at Radboud University have now shown that rhythmic brain waves, called theta oscillations, engage and synchronize the brain regions that support the integration of memories. The results were published in the journal Current Biology on January 28.

Activity in the is not constantly high or low, but rather organized in waves that come and go. For one type of wave, called theta, activity goes up and down a couple of times per second. "We know from previous work that the theta rhythm is important for , and also that temporal and frontal brain regions interact when you combine memories" says Christian Doeller, senior author of the study. "Here we bring these two observations together, by showing that are crucial for memory integration."

Signals from deep inside the brain

There was one problem: in healthy individuals, brain oscillations can only be measured from outside the brain. This complicates measurements of signals from structures deep inside the brain, like the hippocampus: a key brain region for memory. "We had to use advanced computational techniques to reconstruct oscillatory signals from the hippocampus" says lead researcher Alexander Backus. "Using these hippocampal signals, we found that the amount of theta oscillations increased whenever someone succeeds in linking two separate memories". In addition, the researchers saw that theta oscillations from hippocampus were synchronized with the (mPFC), a brain region involved in storing knowledge networks.

Communication through synchronization

According to Backus, distant are able to communicate by synchronizing their theta waves, enabling them to integrate previously stored memories. The findings are important for certain diseases linked to memory integration. For instance in , memories from a past traumatic event are mistakenly linked to everyday life situations. The results of this study might bring us closer to the neurobiological mechanisms underlying such conditions.

According to Doeller, the key observations of the study also have a big impact on our understanding of higher cognitive functions: "The ability to combine information from different memories is what allows us to make decisions based on past experience. Ultimately, this is how we acquire knowledge about our world."

Explore further: Theta oscillations coordinate navigation and movement

More information: Alexander R. Backus et al. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration, Current Biology (2016). DOI: 10.1016/j.cub.2015.12.048

Related Stories

Theta oscillations coordinate navigation and movement

October 13, 2015
Using light pulses, Berlin scientists have recently managed to control theta oscillations in mouse brain. They discovered that these brain waves coordinate movement - enabling signaling between distant brain regions – a ...

Different memory resolutions map onto different brain locations

October 20, 2015
Neuroscientists from Radboud University's Donders Institute have shown that memories of the same events co-exist at different resolutions in the brain. Coarse and fine memory scales are distributed across different parts ...

Brain consolidates memory with three-step brainwave

September 22, 2015
Our long-term memory is consolidated when we sleep. Short-term memory traces in the hippocampus, an area deep in the brain, are then relocated to more outer parts of the brain. An international team of neuroscientists, among ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

'Inner GPS' study may aid diagnosis of brain diseases

November 2, 2015
A new Dartmouth study sheds light on brain cells in our "inner GPS," which may improve understanding of memory loss and wandering behavior in people with Alzheimer's and other neurodegenerative diseases.

Neural states affect learning

May 7, 2014
Theta-band activity in hippocampus after an event seems to be crucial for learning. A study at the University of Jyväskylä also proved that the absence of theta facilitated learning a simple task while training during theta ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.