New lab technology could reveal treatments for muscle-wasting disease

June 6, 2018, Queen Mary, University of London
Cardiomyocytes derived from human iPSCs Credit: Yung-Yao Lin, QMUL

Researchers from Queen Mary University of London have developed new cell-based technologies which could help improve understanding of the muscle-wasting disease Duchenne muscular dystrophy (DMD) and test potential drugs for the disease.

DMD is a genetic disorder causing degeneration and weakness, caused by an absence of the protein dystrophin. DMD usually affects only boys, with around 100 being born with the condition in the UK each year. There are about 2,500 males known to be living with the condition in the UK at any one time.

There are currently no effective treatments for the , and patients often succumb to cardiomyopathy, a weakness of the heart muscle which can be fatal. Significant advances have been made in treating DMD in animal models, but there has not yet been success in translating this into medicines for DMD patients.

The new approach, led by Dr. Yung-Yao Lin from Queen Mary's Blizard Institute and supported by Professor Andy Tinker from Queen Mary's William Harvey Research Institute, uses the latest advances in gene editing and stem cell technology to develop a model of human with DMD which mimic what happens in a patient's muscles.

The team will be using 'induced pluripotent '—adult cells which have been reprogrammed to an embryonic state, so that they can grow to become any type of cell in the body—in this case, skeletal and .

Beating cardiomyocytes derived from human iPSCs. Credit: Yung-Yao Lin, QMUL

A challenge with comparing diseased and healthy cells in research, however, is that each donor's muscle cells have a different genetic make-up. This makes it incredibly difficult to accurately demonstrate functional differences between DMD patient and healthy human donor muscle cells.

To overcome this, the researchers have made use of a gene editing tool known as CRISPR. CRISPR is in use by medical researchers all over the world, but normally it is only used to delete sections of DNA—a relatively simple process.

Here, the team are using CRISPR to instead carry out precise editing of the genetic code within DMD patients' stem cells to 'fix' the code and create a healthy muscle cell which has the same genetic make-up as the original patient's cell.

Dr. Yung-Yao Lin from Queen Mary's Blizard Institute said: "Dystrophin is the largest gene in humans, comprising 2.4 million base-pairs and 79 separate protein-coding regions. This makes it one of the most difficult genes to correct, but we've managed to do it.

"We can now use DMD patient skin cells which are stored in the biobank, and turn them into stem cells to generate an unlimited supply of skeletal and cardiac muscle cells in culture dishes. Our genetically-corrected stem cells will also help us establish a cell-based platform to test future drug candidates."

Skeletal muscle derived from human iPSCs. Credit: Yung-Yao Lin, QMUL

Mark Silverman from the board of trustees of Action Duchenne, a charity supporting muscular dystrophy research, said: "As both a parent and member of the research committee at Action Duchenne, it is very encouraging to see the breakthrough CRISPR editing tool being used in this way.

"There remains a large, unmet need for treatments in Duchenne and families affected by this devastating condition want to see more rapid testing of potential treatments. This exciting news coincides with the release of our latest research strategy, which builds on Action Duchenne's experience in identifying innovative state-of-the art research."

Professor Francesco Muntoni from the MRC Centre for Neuromuscular Diseases said: "We established a rare diseases biological samples biobank to facilitate research on pathogenesis and translational research for children and adults affected by neuromuscular disorders. I am pleased to see this invaluable resource has played a key role in addressing unresolved questions of pathogenesis of Duchenne muscular dystrophy and is being used to develop novel therapeutic strategies."

The research project to further develop these cell-based technologies for DMD stemmed from the Rare Disease Consortium Initiative, a five year agreement between Pfizer and the Global Medical Excellence Cluster, of which Queen Mary is one of several university partners. The Rare Disease Consortium Initiative provides resources and a framework for the research and development of new and innovative medicines for rare diseases.

Explore further: Artificial muscles promise to speed up testing of treatments for muscle diseases

Related Stories

Artificial muscles promise to speed up testing of treatments for muscle diseases

May 9, 2018
Artificial muscles grown from human stem cells could pave the way forward for treating muscle diseases, according to new research led by UCL.

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

CRISPR used to treat Duchenne muscular dystrophy cells in the lab

February 1, 2018
A team of researchers from the U.S. and Germany describes a novel CRISPR approach to produce healthy heart muscle using pluripotent stem cells from Duchenne muscular dystrophy (DMD) patients. In their paper published on the ...

Researchers create skeletal muscle from stem cells

December 18, 2017
UCLA scientists have developed a new strategy to efficiently isolate, mature and transplant skeletal muscle cells created from human pluripotent stem cells, which can produce all cell types of the body. The findings are a ...

Gene-editing alternative corrects Duchenne muscular dystrophy

April 12, 2017
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

Artificial chromosomes could reverse the genetic defects associated with Duchenne muscular dystrophy

January 25, 2018
Scientists at Royal Holloway, University of London, along with colleagues at UCL, have developed a novel artificial human chromosome which could be used to reverse the genetic defect in muscle stem cells from patients with ...

Recommended for you

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.