Massive study sheds light on the genetic roots of atrial fibrillation

June 12, 2018 by Leah Eisenstadt, Broad Institute of MIT and Harvard
Massive study sheds light on the genetic roots of atrial fibrillation
Credit : Susanna Hamilton, Broad Communications

Patients with atrial fibrillation (AF), a condition causing a rapid, irregular heart rate that can increase the risk of stroke, could use some new treatment options. Despite how common the condition is, the current treatment options don't always work.

The roots of are now less mysterious, thanks to a new study.

Led by scientists at the Broad Institute of MIT and Harvard, Massachusetts General Hospital, and Boston University School of Public Health, the largest genetic study of AF to date involving more than a half-million people has revealed dozens of new genetic risk factors for the disorder and identified genes associated with several aspects of cardiac health.

The findings, which the researchers hope will support efforts to develop new drugs to treat AF, are described today in Nature Genetics.

"In atrial fibrillation, the upper chamber of the heart beats irregularly," said Patrick Ellinor, a cardiologist at Massachusetts General Hospital, a professor of medicine at Harvard Medical School, and an associate member of the Broad Institute of MIT and Harvard who helped lead the new study. "The electrical chaos in this chamber is similar to what happens after you throw a handful of pebbles into a pond and waves crash into each other randomly."

To get the heart pumping normally again, cardiologists may try to shock the heart back into a normal rhythm, but that doesn't work for all patients. In some cases, more invasive procedures are done to attempt to control the heart's rhythm. Most who are diagnosed with AF will take blood thinners for their entire lives to reduce the risk for stroke, a treatment that addresses a potential complication of the disease rather than its cause and increases the risk of dangerous bleeding.

With the goal of opening the door to new AF treatments, Ellinor and fellow researchers at the Broad several years ago set out to uncover AF's genetic roots via the institute's partnership with Bayer aimed at leveraging insights from human genetics to help create new cardiovascular therapies. While AF is more common in the elderly, inherited genetic risk factors that lead even some young people to develop the condition could be the key to novel therapies. Working with colleagues around the globe to gather existing genetic data and generate new data from more than half a million people representing four ethnic groups, including more than 65,000 with AF, the team identified dozens of new for the condition. Of the nearly 100 genetic regions associated with risk of developing AF, 67 were never before linked to the disease.

Further analyses of the samples revealed that many of these genes exhibit different levels of expression between healthy patients and those with AF; some of these genes are associated with the development of cardiac tissue, its electrophysiological capabilities, and the structural and contractile properties of cardiac muscle.

"Our results provide a more complete picture of the genomic basis of atrial fibrillation," said Carolina Roselli, a computational biologist in the Broad's Cardiovascular Disease Initiative who led the study's data analysis. "I am very excited for our team to take these findings into the lab to learn more about the molecular mechanisms responsible for the disease."

While insights from this study may help to generate new AF treatments, Ellinor stressed that they have much work to do before patients see new drugs in the clinic. "The findings give us a really good foundation for what we ought to be studying in the lab," he said. "It's a much broader portfolio of genes and pathways to focus on that we just haven't had in the past, and we're excited about the future possibilities."

Explore further: Patients who have had an irregular heart beat can't ever be considered 'cured'

More information: Roselli C, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics. DOI: 10.1038/s41588-018-0133-9

Related Stories

Patients who have had an irregular heart beat can't ever be considered 'cured'

May 10, 2018
Patients with an abnormal heart rhythm that can leave them at a higher risk of suffering from stroke still need treatment even after their heart rhythm seems to have returned to normal, say researchers at the University of ...

Obesity might raise your risk for A-fib

May 9, 2018
(HealthDay)—Obese people are at increased risk for the heart rhythm disorder atrial fibrillation, which can cause complications such as heart failure and stroke.

Atrial fibrillation patients diagnosed with coronary heart disease face increased risk of dementia

May 11, 2018
Atrial fibrillation patients who are diagnosed with carotid artery disease face higher risks for developing dementia, according to new research from the Intermountain Medical Center Heart Institute in Salt Lake City.

Obesity linked with higher chance of developing rapid, irregular heart rate

April 18, 2018
People with obesity are more likely to develop a rapid and irregular heart rate, called atrial fibrillation, which can lead to stroke, heart failure and other complications, according to Penn State researchers.

Atrial fibrillation risk rises with decreasing kidney function

August 10, 2017
A new study indicates that individuals with kidney disease have a higher risk of developing atrial fibrillation, or an irregular heartbeat. The findings, which appear in an upcoming issue of the Clinical Journal of the American ...

Short episodes of abnormal heart rhythm may not increase risk of stroke

October 17, 2016
People with pacemakers or defibrillators who experience only short episodes of an abnormal heart rhythm known as atrial fibrillation have a very low risk of stroke, suggesting that anticoagulants in this group of patients ...

Recommended for you

Psychiatric disorders share an underlying genetic basis

June 21, 2018
Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at ...

New cellular pathway helps explain how inflammation leads to artery disease

June 21, 2018
Investigators have identified a new cellular pathway that may help explain how arterial inflammation develops into atherosclerosis—deposits of cholesterol, fats and other substances that create plaque, clog arteries and ...

Deep data dive helps predict cerebral palsy

June 21, 2018
When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica's frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, ...

Genetic variation in progesterone receptor tied to prematurity risk, study finds

June 21, 2018
Humans have unexpectedly high genetic variation in the receptor for a key pregnancy-maintaining hormone, according to research led by scientists at the Stanford University School of Medicine. The finding may help explain ...

Shared genetics may shape treatment options for certain brain disorders

June 20, 2018
Symptoms of schizophrenia and bipolar disorder, including psychosis, depression and manic behavior, have both shared and distinguishing genetic factors, an international consortium led by researchers from Vanderbilt University ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.