The molecules that energize babies' hearts

June 14, 2018, Hokkaido University
Credit: Hokkaido University

A metabolic process that provides heart muscle with energy fails to mature in newborns with thickened heart walls, according to a Japan–Canada research team.

Hokkaido University cardiologist Arata Fukushima, along with a team of University of Alberta scientists led by Gary Lopaschuk, examined the heart tissue of 84 newborns who had undergone surgery for . Many patients with the disease develop thickened heart walls, or hypertrophy, which can lead to fatal heart failure even after the surgery.

Before birth, use energy generated by breaking down glucose. Immediately after birth, they rapidly switch to breaking down fatty acids. This switch is hindered in hypertrophied newborn hearts. Fukushima and his team wanted to investigate how this happens at the molecular level.

In the study, published in the Journal of Clinical Investigation Insight, the team compared the biopsy samples taken from normal and thickened right ventricular walls. They found that two enzymes involved in fatty acid break down, called LCAD and βHAD, were "hyperacetylated" in non-hypertrophied right ventricles. This means that large amounts of acetyl groups were added to the proteins, increasing their activity levels. This, in turn, led to increased .

The cultured cells lacking gcn5l1(right) formed thicker muscle fibers comparing to normal cells (left). Credit: Fukushima A. et al., The Journal of Clinical Investigation Insight, May 17, 2018

In hypertrophied hearts, these two enzymes were not hyperacetylated, leading to reduced fatty acid metabolism in these newborns. The team detected reduced activity of an acetylation promoting gene, calledgcn5l1,in hypertrophied hearts.

When the team experimented on cultured hypertrophy-like , they found that turning off the gcn5l1 gene led to decreased acetylation of LCAD and βHAD, and a reduced fatty acid oxidation in the cells. Moreover, the cells lacking gcn5l1 formed thicker muscle fibers comparing to normal cells.

"Our findings show that acetylation of metabolic enzymes plays an important role in controlling the dramatic changes in energy metabolism that occur in newborn hearts immediately after birth," says Arata Fukushima. "The findings also show how hypertrophy can perturb this process by delaying the maturation of fatty acid metabolism, which compromises the ability of the newborn to generate energy. Developing drugs that enhance acetylation of the metabolic enzymes could help treat patients with hypertrophy."

Explore further: Heart failure is associated with increased acetylation of metabolic proteins

More information: Arata Fukushima et al. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism, JCI Insight (2018). DOI: 10.1172/jci.insight.99239

Related Stories

Heart failure is associated with increased acetylation of metabolic proteins

February 25, 2016
In cardiac hypertrophy, metabolic energy reserves in the heart are depleted, which is thought to contribute to the subsequent development of heart failure. The primary energy source in the heart relies on fatty acid oxidation ...

Study finds that fat fuel is needed to reverse cardiac hypertrophy 

December 8, 2017
The metabolic triggers that causes enlarged hearts—a condition known as cardiac hypertrophy—remain elusive, but researchers at Purdue University are getting closer to solving this riddle.

Getting to the heart of congenital cardiac defects

June 12, 2018
Heart defects are the most common type of birth defect, and can be caused by mutations in the gene CHD4. Researchers at the UNC School of Medicine have now revealed key molecular details of how CHD4 mutations lead to heart ...

An enzyme variant reduces cardiac hypertrophy and improves heart function

February 6, 2018
Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have identified a variant of the enzyme calcineurin, called CnAβ1, whose action reduces cardiac hypertrophy and improves heart function. ...

Enigma of fatty acid metabolism solved—enzyme shape controls activity

June 14, 2018
The core components of all body fats are fatty acids. Their production is initiated by the enzyme ACC. Researchers at the University of Basel's Biozentrum have now demonstrated how ACC assembles into distinct filaments. As ...

New target for treating heart failure identified

June 11, 2018
Changes in cellular struts called microtubules (MT) can affect the stiffness of diseased human heart muscle cells, and reversing these modifications can lessen the stiffness and improve the beating strength of these cells ...

Recommended for you

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Researchers say ritual for orthodox Jewish men may offer heart benefits

October 11, 2018
A pilot study led by researchers at the University of Cincinnati (UC) College of Medicine suggests Jewish men who practice wearing tefillin, which involves the tight wrapping of an arm with leather banding as part of daily ...

Markers of dairy fat consumption linked to lower risk of type two diabetes

October 10, 2018
Higher levels of biomarkers of dairy fat consumption are associated with a lower risk of developing type 2 diabetes, according to new research published today in PLOS Medicine. The study, in more than 60,000 adults, was undertaken ...

Seed oils are best for LDL cholesterol

October 9, 2018
If you want to lower your low-density lipoprotein cholesterol, called LDL or, colloquially, "bad cholesterol," the research is clear about one thing: You should exchange saturated fats with unsaturated fat. If you want to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.