Research identifies possible new pathway to treat anxiety

June 14, 2018, University of Alberta Faculty of Medicine & Dentistry
University of Alberta researcher William Colmers has identified a new pathway in the brain that might be a good target for a drug to reduce the symptoms of anxiety. Credit: Melissa Fabrizio

Researchers know that anxiety is a result of repeated stress. William Colmers, a University of Alberta professor in the Department of Pharmacology, is trying to understand why stress affects people differently, and to identify possible new therapeutic approaches to anxiety disorders.

The body is designed to deal with stress thanks to a "fight or flight" response that helps prepare your mind and body to either defend yourself or get away from stressors. Normally, this response reverses once the danger is over, but the over-use of this stress response can also end up causing anxiety.

"Your resources become depleted," said Colmers. "It's like gunning your engine to take off, but if you don't stop, you'll run out of gas at some point."

Anxiety disorders are widespread in today's society. One in four people have an incident in their lifetime, the severity of which can range from manageable to debilitating.

The Colmers lab is interested in the reversal process—turning the stress back down to a level where you can use the resources that you are wasting on the flight or fight response to do other essential things.

The U of A team has identified a new pathway in the brain that might be a good target for a drug to reduce the symptoms of anxiety.

"It's a whole new way of looking at how anxiety can be regulated. It gives us a great deal of hope in terms of finding new avenues for treatment," said Colmers.

Peptide pivot point influences anxiety

To do this, Colmers studied the stress hormone, a peptide called corticotropin-releasing hormone (CRH), and the anti-stress hormone that stops the cycle, called neuropeptide-Y (NPY).

NPY is a brain chemical messenger that the Colmers lab has studied in relation to epilepsy and appetite. He is now investigating how the hormone affects a stress-sensitive part of the brain called the amygdala and its action in reversing stress responses.

It has been shown that NPY causes an animal to become less stressed, acting as an anxiolytic?reducing anxiety. The response to NPY can be observed by testing if the animal is more willing to interact with other animals it does not know, which can be a stressful experience.

While the effect of exposure to NPY lasts just a short while, multiple exposures make the animal resilient to stress for weeks or months.

The Colmers lab identified the exact mechanism that elicits this :

Activity in the output neurons of the amygdala signals fear or danger. Anything that slows their activity down causes anxiolysis (inhibiting anxiety). The hormone CRH increases the activity of these neurons, while NPY does the opposite, slowing down the firing of these neurons.

The same ion channel in the nerve cell's membrane is activated by CRH to excite these neurons, and is shut down by NPY to silence them.

"The same pivot point is being used by the peptides that cause or reduce ," said Colmers.

Colmers observed that over a longer period, the ion channels that NPY shuts down disappear from the membrane, so there are less of those ion channels around.

In a collaboration with Janice Urban's laboratory at Rosalind Franklin University in North Chicago, IL, the U of A team tested to see how important the channel was for behavior.

The lab used a small hairpin RNA (shRNA), which can prevent the protein from being made by the nerve cell. They used a tailored virus to get the nerve cells to produce the shRNA that stops their normal production of the ion channel. It is a very selective method, and can be put in very precise regions of the brain using this viral delivery system.

The group found that within a week of inhibiting the protein, the animals were more likely to interact, and the change lasted for at least eight weeks.

"Knocking down the protein causes animals to be less anxious," said Colmers. "This gives us a new drug target, and we now have a better understanding of how that area of the brain works."

Explore further: Scientists show how brain circuit generates anxiety

More information: Heika Silveira Villarroel et al, NPY Induces Stress Resilience via Downregulation ofIhin Principal Neurons of Rat Basolateral Amygdala, The Journal of Neuroscience (2018). DOI: 10.1523/JNEUROSCI.3528-17.2018

Related Stories

Scientists show how brain circuit generates anxiety

May 29, 2018
Neuroscientists at Cold Spring Harbor Laboratory (CSHL) have identified a neural circuit in the amygdala, the brain's seat of emotion processing, that gives rise to anxiety. Their insight has revealed the critical role of ...

Neural circuit mechanisms of emotion identified

June 12, 2018
According to a report by the World Health Organization, close to 1 in 10 people in the world are affected by anxiety and/or depression. Alarmingly, the amount has nearly doubled, from 416 million to 615 million, between 1990 ...

Increased nerve activity may raise blood pressure in anxiety

May 3, 2018
Sympathetic nerve activity to skeletal muscle blood vessels—a function of the nervous system that helps regulate blood pressure—increases during physiological and mental stress in people with chronic anxiety, a new study ...

A possible explanation for why male mice tolerate stress better than females

October 13, 2016
The nerves we feel before a stressful event—like speaking in public, for example—are normally kept in check by a complex system of circuits in our brain. Now, scientists at Rockefeller University have identified a key ...

Recommended for you

Cell type and environment influence protein turnover in the brain

June 19, 2018
Scientists have revealed that protein molecules in the brain are broken down and replaced at different rates, depending on where in the brain they are.

Researchers investigate changes in white matter in mice exposed to low-frequency brain stimulation

June 19, 2018
A team of researchers at the University of Oregon has learned more about the mechanism involved in mouse brain white matter changes as it responds to stimulation. In their paper published in Proceedings of the National Academy ...

Left, right and center: mapping emotion in the brain

June 19, 2018
According to a radical new model of emotion in the brain, a current treatment for the most common mental health problems could be ineffective or even detrimental to about 50 percent of the population.

Often overlooked glial cell is key to learning and memory

June 18, 2018
Glial cells surround neurons and provide support—not unlike hospital staff and nurses supporting doctors to keep operations running smoothly. These often-overlooked cells, which include oligodendrocytes and astrocytes, ...

Electrically stimulating the brain may restore movement after stroke

June 18, 2018
UC San Francisco scientists have improved mobility in rats that had experienced debilitating strokes by using electrical stimulation to restore a distinctive pattern of brain cell activity associated with efficient movement. ...

Neuroscientists map brain's response to cold touch

June 18, 2018
Carnegie Mellon University neuroscientists have mapped the feeling of cool touch to the brain's insula in a mouse model. The findings, published in the June 15 issue of Journal of Comparative Neurology, provide an experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.