New technique helps uncover changes in ALS neurons

June 22, 2018, Northwestern University
ALS patient motor neurons obtained through optopatch recordings. Credit: Northwestern University

Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study published in Stem Cell Reports.

"The excitability changes observed in these patient neurons most likely represent the early steps in the disease process," said Evangelos Kiskinis, Ph.D., assistant professor in the Ken and Ruth Davee Department of Neurology in the Division of Neuromuscular Disease. He is a principal investigator at the Les Turner ALS Center and a co-author of the study. "The fact that these changes are detectable in stem cell-derived neurons offers the hope that interventions that affect excitability could affect disease progression before symptoms begin."

This new technique, called optopatch, allows scientists to measure electricity in cells en masse, in contrast to the current method, which forces scientists to measure activity in cells one at a time, according to Kiskinis.

"This allows us to literally see electricity in a cell and measure hundreds of cells in one go," said Kiskinis, also a professor of Physiology. "In the past, we relied on single cell manual patch physiology to get this information, which lasted for days and required significant manual working hours."

In the current study, Kiskinis, along with collaborators at Harvard University, created patient-derived spinal cord motor neurons from ALS patient stem cells and used the optopatch technique to examine the electrical patterns from thousands of neurons—the first time the approach has been used to study a human disease model.

The scientists found that ALS neurons were hyper-excitable under normal conditions, but became hypo-excited when prompted to fire rapidly. These findings are in line with what previous studies have shown about the transition from hyper-excitability to hypo-excitability and eventually cell death in ALS neurons, according to Kiskinis.

In addition, they found only some ALS exhibited these characteristics; the rest appeared normal.

"These observations highlight the importance of analyzing neuronal recordings at the single-cell level, rather than simply looking at aggregate population-level statistics," Kiskinis said. "We are intrigued to find what makes some of our vulnerable while others are resistant to this phenotype."

In the future, Kiskinis and his collaborators hope to examine whether other genetic sub-types of ALS exhibit these alterations in excitability and search for molecules that can reverse those changes.

"We now have a platform to study this process in more detail and identify such therapeutic interventions," Kiskinis said.

Explore further: DNA methylation plays key role in stem cell differentiation

More information: Evangelos Kiskinis et al. All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS, Stem Cell Reports (2018). DOI: 10.1016/j.stemcr.2018.04.020

Related Stories

DNA methylation plays key role in stem cell differentiation

March 26, 2018
Northwestern Medicine scientists have discovered how the process of DNA methylation regulates the development of spinal cord motor neurons, according to a study published in the journal Cell Stem Cell.

Interconnected cells-in-a-dish let researchers study brain disease

May 3, 2018
By creating multiple types of neurons from stem cells and observing how they interact, Salk scientists have developed a new way to study the connections between brain cells in the lab. Using the technique, which generates ...

Molecule may be key to pain relief in diabetic neuropathy

May 1, 2018
A new study published in the Journal of Clinical Investigation has identified a key molecule that contributes to painful diabetic neuropathy, an incurable nerve disease that affects about one-quarter of all patients with ...

Patient stem cells help identify common problem in ALS

April 3, 2014
Harvard stem cell scientists have discovered that a recently approved medication for epilepsy may possibly be a meaningful treatment for amyotrophic lateral sclerosis (ALS)—Lou Gehrig's disease, a uniformly fatal neurodegenerative ...

Changing size of neurons could shed light on new treatments for motor neurone disease

March 5, 2018
New research published in The Journal of Physiology improves our understanding of how motor nerve cells (neurons) respond to motor neurone disease, which could help us identify new treatment options.

Research uncovers gene network that regulates motor neuron formation during embryonic development

February 2, 2018
UCLA researchers have discovered the inner workings of a gene network that regulates the development of spinal motor neurons in the growing chicken and mouse embryo. The research also answers a long-standing question about ...

Recommended for you

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Insight without incision: Advances in noninvasive brain imaging offers improvements to epilepsy surgery

July 17, 2018
About a third of epilepsy sufferers require treatment through surgery. To check for severe epilepsy, clinicians use a surgical procedure called electrocorticography (ECoG). An ECoG maps a section of brain tissue to help clinicians ...

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.