Researchers uncover new target to stop cancer growth

June 21, 2018, Rockefeller University Press
3D super-resolution microscopy shows that breast cancer cells (left) contain many large multivesicular bodies (green and red) that are full of exosomes ready to be released from the cell. In the absence of Munc13-4 (right), multivesicular bodies are much smaller and incapable of releasing their contents. Credit: Messenger et al., 2018

Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate tumor progression. The study, which will be published June 21 in the Journal of Cell Biology, could lead to new therapies that stop tumor growth and metastasis by halting exosome production.

Cancer cells produce of , which contribute to tumor progression in many different ways. They can transfer cancer-causing oncogenes to neighboring cells to increase their proliferation; they can contain proteins that reorganize the ' surroundings and allow them to spread to other tissues; and they can contain signaling factors that disrupt the body's ability to mount an immune response against the tumor.

A team led by Thomas F.J. Martin of the University of Wisconsin-Madison with Scott W. Messenger as lead author found that calcium—which is often increased in cancer cells—stimulated the secretion of exosomes from aggressive . Exosome release depended on a calcium-binding protein called Munc13-4; removing this protein, or replacing it with a mutant version unable to bind calcium, prevented breast cancer cells from releasing exosomes in response to calcium.

Munc13-4 levels are often elevated in human breast, pancreatic, and lung tumors. Martin and colleagues found that lung and pancreatic cancer cells increased their levels of Munc13-4 and released more exosomes as they became more aggressive.

Exosomes are formed inside large cellular organelles called multivesicular bodies. These organelles then fuse with the cell's plasma membrane to release exosomes outside of the cell. Messenger et al. found that Munc13-4 works with another protein called Rab11 to promote the development of multivesicular bodies capable of fusing with the and releasing exosomes.

Exosomes released from cancer cells carry an enzyme called MT1-MMP, which degrades the surrounding cancer cells. This helps the cancer cells disperse around the body to form secondary metastatic tumors.

When Martin and colleagues depleted Munc13-4, they reduced the release of MT1-MMP-containing exosomes from breast cancer cells and inhibited the cells' ability to degrade the extracellular matrix.

"Overall, we think that increased expression of Munc13-4, combined with elevated calcium levels, drives enhanced exosome release by highly aggressive cancer cells, and that Munc13-4 is a potential target for therapeutic intervention," Martin says.

Explore further: New mechanism by which Alzheimer's disease spreads through the brain discovered

More information: Messenger et al., 2018. J. Cell Biol. DOI: 10.1083/jcb.201710132

Related Stories

New mechanism by which Alzheimer's disease spreads through the brain discovered

June 14, 2018
The waste-management system of the cell appears to play an important role in the spread of Alzheimer's disease in the brain. A new study has focused on small, membrane-covered droplets known as exosomes. It was long believed ...

How the breast cancer cells transform normal cells into tumoral ones?

November 13, 2014
Researchers at the Bellvitge Biomedical Research Institute of Bellvitge, the Catalan Institute of Oncology and the University Hospital of Bellvitge have participated in an international study published in the journal Cancer ...

Cancer exosome 'micro factories' aid in cancer progression

October 23, 2014
Exosomes, tiny, virus-sized particles released by cancer cells, can bioengineer micro-RNA (miRNA) molecules resulting in tumor growth. They do so with the help of proteins, such as one named Dicer. New research from The University ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Study could lead to 'liquid biopsy' tests for bladder cancer

January 22, 2014
Findings from a Loyola University Medical Center study ultimately could lead to tests to screen for and diagnose bladder cancer.

Recommended for you

Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort

September 18, 2018
The consumption of foods with higher scores on the British Food Standards Agency nutrient profiling system (FSAm-NPS), reflecting a lower nutritional quality, is associated with an increased risk of developing cancer, according ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

CRISPR screen reveals new targets in more than half of all squamous cell carcinomas

September 18, 2018
A little p63 goes a long way in embryonic development—and flaws in p63 can result in birth defects like cleft palette, fused fingers or even missing limbs. But once this early work is done, p63 goes silent, sitting quietly ...

Enlarged genotype-phenotype correlation for a three-base pair deletion in neurofibromatosis type 1

September 18, 2018
International collaborative research led by Ludwine Messiaen, Ph.D., shows that while a three-base pair, in-frame deletion called p.Met992del in the NF1 gene has a mild phenotype for people with the genetic disorder neurofibromatosis ...

Artificial intelligence can determine lung cancer type

September 17, 2018
A new computer program can analyze images of patients' lung tumors, specify cancer types, and even identify altered genes driving abnormal cell growth, a new study shows.

Researchers develop mechanism for characterizing function of rare tumor cells

September 17, 2018
Scientists have long known that circulating tumor cells, rare cancer cells that are released into the bloodstream, have the potential to provide vital information about a person's specific cancer. But until now, they have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.