Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018, University College London

A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System in Singapore.

The study, published today in Nature Medicine, highlights the potential of fetal gene therapy to prevent and cure neonatal lethal neurodegenerative diseases in humans in utero.

Gaucher is an irreversible, inherited that results from not having enough glucocerebrosidase (GCase) - an enzyme that breaks down fatty chemicals called glucocerebrosides (GBA). Because the body cannot break down this chemical, the fat-laden Gaucher cells build up in the spleen, liver, bone marrow, and nervous system, causing bone disease, anaemia, fatigue, eye problems, seizures, and brain damage.

Mutations in the GBA gene, which encodes the GCase enzyme that is deficient in Gaucher disease, are also a risk factor for Parkinson's disease."Although the symptoms of some mild forms of Gaucher disease can be treated postnatally, more severe forms that cause early-onset, irreversible neurodegeneration are currently untreatable and are often fatal in infants. Being able to provide therapy at the earliest possible opportunity is vital in treating the brain which has a limited capacity to regenerate," explained senior author, Dr. Ahad Rahim (UCL School of Pharmacy).

Scientists used a viral vector to deliver genetic material into the brains of fetal mice carrying neuropathic Gaucher disease, caused by mutations in GBA. Mice who received the gene therapy exhibited less brain degeneration and survived considerably longer than untreated mice.

"We found that the mice who received an injection of adeno-associated virus (AAV) vector were more able to break down fatty chemicals and re-express the gene encoding an enzyme that is deficient in Gaucher disease," said corresponding author, Dr. Simon Waddingdon (UCL Institute for Women's Health).

"The mice who received the injection in utero, lived for up to at least 18 weeks after birth compared to 15 days in untreated mice and had no signs of neurodegeneration and were fertile and fully mobile. Neonatal intervention also rescued mice but less effectively."

Given the promising results shown in , the team from Singapore performed the test in non-human primates (NHP) at the early stages of pregnancy. This is the gestation when a clinical diagnosis of genetic conditions can be made, and when the immune system is more responsive to gene therapy. The research involved the use of NHPs due to their similarity to humans in the development of the central nervous system, and other organs, allowing for an accurate model to be achieved in fetal gene transfer.

The team showed that the delivery of viral vectors to the developing brain is feasible using an established clinical approach that resulted in the distribution of the transgene to the developing brain.

"Macaques and humans share a very similar neurological, immunological and physiological developmental time-line in the womb, making them accurate models for pre-clinical investigations before clinical trials can proceed. We have used a clinically relevant method to deliver the GBA gene using AAV vectors to the brain efficiently.

"This new approach will bring hope, not only for Gaucher disease, but also for other inborn errors of metabolism that can potentially be treated using fetal gene therapy," said Associate Professor Jerry Chan, Senior Consultant, Department of Reproductive Medicine, KK Women's and Children's Hospital.

The team, which also involved scientists from King's College London, Imperial College London, the University of Oxford and an international team of researchers, are now engaged with Apollo Therapeutics in developing gene therapy for Gaucher disease.

Dan Brown, Chairman of the Gauchers Association added, "The Association has been involved as part of this project from a very early stage providing the initial grant to which allowed them to begin their research and are delighted to hear of the promising results published today."

Explore further: New therapy could treat children with Hunter disease

More information: Giulia Massaro et al, Fetal gene therapy for neurodegenerative disease of infants, Nature Medicine (2018). DOI: 10.1038/s41591-018-0106-7

Related Stories

New therapy could treat children with Hunter disease

July 6, 2018
A team at the University of Manchester have developed a novel stem cell gene therapy approach to treat children with a devastating genetic disease. The approach is currently being developed for clinical trial in patients ...

Researchers find that lipid accumulation in the brain may be an early sign of Parkinson's disease

April 29, 2018
A collaborative team of researchers at McLean Hospital, a Harvard Medical School affiliate, and Oxford University has found that elevated levels of certain types of lipids (fat molecules) in the brain may be an early sign ...

Team finds that drug used for another disease slows progression of Parkinson's

October 8, 2014
A new study from UCLA found that a drug being evaluated to treat an entirely different disorder helped slow the progression of Parkinson's disease in mice.

Rare genetic disorder provides unique insight into Parkinson's disease

June 23, 2011
Massachusetts General Hospital investigators appear to have found the mechanism behind a previously reported link between the rare genetic condition Gaucher disease and the common neurodegenerative disorder Parkinson's disease. ...

New nuclear medicine technique could help tackle brain disease

June 25, 2018
A new molecular imaging method can monitor the success of gene therapy in all areas of the brain, potentially allowing physicians to more effectively tackle brain conditions such as Parkinson's disease, Alzheimer's disease ...

Identifying Crohn's disease risk factors in the Ashkenazi Jewish population

May 25, 2018
It is estimated that one in three individuals of Ashkenazi Jewish (AJ) descent carry mutations that increase their risk for certain genetic diseases. For instance, Crohn's, a highly heritable inflammatory bowel disease, is ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.