Researchers trace Parkinson's damage in the heart

July 13, 2018, University of Wisconsin-Madison
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

A new way to examine stress and inflammation in the heart will help Parkinson's researchers test new therapies and explore an unappreciated way the disease puts people at risk of falls and hospitalization.

By the time Parkinson's disease patients are diagnosed—typically based on the tremors and motor-control symptoms most associated with the disease—about 60 percent of them also have serious damage to the heart's connections to the sympathetic nervous system. When healthy, those nerves spur the heart to accelerate its pumping to match quick changes in activity and blood pressure.

"This in the heart means patients' bodies are less prepared to respond to stress and to simple changes like standing up," says Marina Emborg, a University of Wisconsin-Madison professor of medical physics and Parkinson's researcher at the Wisconsin National Primate Research Center. "They have increased risk for fatigue, fainting and falling that can cause injury and complicate other symptoms of the disease."

Emborg, graduate student Jeanette Metzger, and colleagues including UW-Madison specialists in cardiology and medical imaging developed a method for tracking the mechanisms that cause the damage to heart nerve cells. They tested the method in the human-like nervous system and heart of monkeys, and published their results today in the journal npj Parkinson's Disease.

Ten served as models for Parkinson's symptoms, receiving doses of a neurotoxin that caused damage to the nerves in their hearts in much the same way Parkinson's affects human patients. Once before and twice in the weeks after, the monkeys underwent PET scans—positron emission tomography, a technology that can track chemical processes in the body using radioactive tracers.

The UW-Madison researchers used three different tracers, called radioligands, to map three different things in the left ventricle (the strongest pumping chamber) of monkeys' hearts: where the nerves extending into the heart muscle were damaged, where the heart tissue was experiencing the most inflammation, and where they found the most oxidative stress.

The scans were accurate enough to allow the researchers to focus on changes over time in specific areas of the heart's left ventricle.

"We know there is damage in the heart in Parkinson's, but we haven't been able to look at exactly what's causing it," says Metzger, lead author of the study. "Now we can visualize in detail where inflammation and oxidative stress are happening in the heart, and how that relates to how Parkinson's patients lose those neuronal connections in the heart."

By tracing the progression of nerve damage and the progression of potential causes of that damage, the radioligands can also be used to test the efficacy of new treatments to protect the neurons that regulate the activity of the patients' hearts.

The researchers gave half the monkeys in the study a drug, pioglitazone, that has shown promise in protecting central nervous system cells from inflammation and oxidative stress.

"The recovery of nerve function is much greater in the pioglitazone-treated animals," says Emborg, whose work is supported by the National Institutes of Health. "And what's interesting is this method allows us to identify very specifically the differences the treatment made—separately for inflammation and for —across the heart."

The results suggest human patients could benefit from the radioligand scans, and Metzger wonders if it could help catch some Parkinson's patients before their other symptoms progress.

"Much of the neural degeneration that occurs in the heart can happen very early in the course of the disease. A lot of patients have problems with their heart before they have motor problems," she says. "While these PET techniques potentially provide a way to test drugs, they may also be used as tools to understand the mechanisms underlying early heart nerve damage."

The heart problems opened to examination by the new imaging methods are not limited to Parkinson's disease. Heart attacks, diabetes and other disorders cause similar to nerves in the , and those patients and potential therapies could also benefit from the new visualization method.

Explore further: What is heart failure?

Related Stories

What is heart failure?

April 17, 2018
Heart failure – one of the conditions former first lady Barbara Bush has been diagnosed with – is a fairly common condition, especially among older patients.

A neuron can cause a domino effect

March 2, 2018
Loss of the sense of smell can indicate a neural disease like Alzheimer's or Parkinson's disease. However, contrary to previous belief, degenerations in the nervous system do not play a leading role in the loss of the sense ...

Identifying the dangers of chronic stress on multiple sclerosis

February 6, 2018
New research reveals how chronic stress and tiny brain inflammations cause fatal gut failure in a multiple sclerosis mouse model.

Individuals with HIV at higher risk for heart disease

January 25, 2018
A review of more than 80 studies reveals that changes in the immune cells of people with human immunodeficiency virus (HIV) infection may increase their risk of cardiovascular disease (CVD). The review is published in the ...

Do I need a heart scan?

August 4, 2017
Dear Mayo Clinic: I'm a 57-year-old man, and my doctor recently recommended I have a CT scan of my heart to look for calcium in my arteries. I've never had heart problems. Is this test really necessary?

Broken hearts don't self-heal

June 16, 2017
A condition once thought to temporarily cause heart failure in people who experience severe stress might actually cause longer-lasting damage to the heart muscle.

Recommended for you

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

New high-throughput screening study may open up for future Parkinson's disease therapy

September 11, 2018
Parkinson's disease (PD) is the most common movement disorder in the world. PD patients suffer from shaking, rigidity, slowness of movement and difficulty with walking. It is a neurodegenerative disease caused by the loss ...

Marmosets serve as an effective model for non-motor symptoms of Parkinson's disease

September 5, 2018
Small, New World monkeys called marmosets can mimic the sleep disturbances, changes in circadian rhythm, and cognitive impairment people with Parkinson's disease develop, according to a new study by scientists at Texas Biomedical ...

Novel brain network linked to chronic pain in Parkinson's disease

August 28, 2018
Scientists have revealed a novel brain network that links pain in Parkinson's disease (PD) to a specific region of the brain, according to a report in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.