Scientists discover a dynamic cellular defense against breast cancer invasion

July 30, 2018, Johns Hopkins University School of Medicine
Real-time 3D confocal time-lapse movie of Twist1-expressing epithelial cells (red) invading into the surrounding extracellular matrix and then being restrained and pulled back by normal myoepithelial cells (green). Credit: Katarina Sirka

Johns Hopkins researchers report they have demonstrated in mouse tissue grown in the lab that the cell layer surrounding breast milk ducts reaches out to grab stray cancer cells to keep them from spreading through the body. The findings reveal that this cell layer, called the myoepithelium, is not a stationary barrier to cancer invasion, as scientists previously thought, but an active defense against breast cancer metastasis.

Results of the scientists' experiments are published online July 30, 2018, in the Journal of Cell Biology.

"Understanding how are contained could eventually help us develop ways to predict a person's individualized risk of metastasis," says Andrew Ewald, Ph.D., professor of cell biology at the Johns Hopkins University School of Medicine and a member of the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center.

Most tumors begin in the cells that line the interior of breast milk ducts. These cells in turn are surrounded by myoepithelial cells, Ewald says, which work together to contract and move milk through the ducts when a baby is nursing.

This myoepithelial layer is used clinically to distinguish contained breast cancers from invasive cancers in humans. When breach the myoepithelial layer, the result is so-called invasive carcinoma, which is associated with higher rates of recurrence and the need for more aggressive treatment, says Ewald.

"If you think about metastasis as a long race, breaking through this layer is the exit from the starting gate," says Ewald.

For their study, Ewald and his team engineered cells taken from the lining of mouse breast ducts to produce the protein Twist1, which works by altering gene expression and which has been linked to metastasis in multiple tumor types.

To their surprise, the researchers saw that when the invasive Twist1 cells broke through the myoepithelial layer, the myoepithelial cells grabbed the cells that had gone astray and successfully pulled them back within the breast duct lining 92 percent of the time through 114 observations.

"These findings establish the novel concept of the myoepithelium as a dynamic barrier to cell escape, rather than acting as a stone wall as it was speculated before" says Katarina Sirka, a Ph.D. student from the Ewald laboratory.

To confirm that their findings were active behaviors, Ewald and his team altered two key characteristics of myoepithelial cells—their ability to contract and their numerical ratio to the invasive cells.

First, the researchers genetically engineered mouse myoepithelial cells to deplete their smooth muscle actin, a protein that allows the cells to contract. Under that condition, the number of escaped invasive cells that broke through the myoepithelial layer increased threefold compared to control cells with a normal myoepithelium.

Likewise, the researchers found that decreasing the proportion of myoepithelial cells to invasive cells increased the number of escaped cancer cells. By adding just two myoepithelial cells for each invasive cell, the escape rate decreased fourfold compared with the spread of invasive cells with no defending barrier.

"This is important to know because it suggests that both the physical completeness of the myoepithelium and the gene expression within the myoepithelial cells are important in predicting the behavior of human breast tumors. Anywhere this layer thins or buckles is an opportunity for cancer to escape," says Eliah Shamir, M.D., Ph.D, who is currently a surgical pathology fellow at the University of California, San Francisco.

In the future, Ewald and his team plan to study the cellular mechanisms prompting the myoepithelial layer to react so dynamically and what makes it fail during invasive progression.

Explore further: Cells lining milk ducts hold key to spread of common form of breast cancer

Related Stories

Cells lining milk ducts hold key to spread of common form of breast cancer

May 5, 2008
When a form of cancer that begins in the milk ducts of the breast invades neighboring tissue to spread to other parts of the body, the cause lies not in the tumor cells themselves but in a group of abnormal surrounding cells ...

Scientists identify 'gatekeepers' of breast cancer transition to invasive disease

May 5, 2008
Scientists have made a significant discovery that clarifies a previously poorly understood key event in the progression of breast cancer. The research, published by Cell Press in the May issue of the journal Cancer Cell, ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

Changes in breast tissue increase cancer risk for older women

April 24, 2018
Researchers in Norway, Switzerland, and the United States have identified age-related differences in breast tissue that contribute to older women's increased risk of developing breast cancer. The findings, published April ...

Researchers uncover cell types of the human breast epithelium

June 1, 2018
Researchers from the University of California, Irvine School of Medicine, in collaboration with scientists at UCSF and Northwestern University, have profiled human breast epithelial cells, identifying three new distinct epithelial ...

First step of metastasis halted in mice with breast cancer

December 12, 2013
Cell biologists at Johns Hopkins have identified a unique class of breast cancer cells that lead the process of invasion into surrounding tissues. Because invasion is the first step in the deadly process of cancer metastasis, ...

Recommended for you

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.