Discovery could lead to higher immunotherapy response rates for bladder cancer patients

August 29, 2018, The Mount Sinai Hospital
Credit: CC0 Public Domain

Mount Sinai researchers have discovered that a particular type of cell present in bladder cancer may be the reason why so many patients do not respond to the groundbreaking class of drugs known as PD-1 and PD-L1 immune checkpoint inhibitors, which enable the immune system to attack tumors.

In a study published in August in Nature Communications, the Mount Sinai team reported that , a subset of often found in the tumor environment, may be preventing known as T- from seeking out and destroying the invading . The researchers showed that expression of a set of genes that are typically linked to more aggressive cancers was actually more commonly linked to stromal cells rather than cells themselves. They also showed that tumors with increased expression of these genes, known as epithelial mesenchymal transition genes, did not respond well to immune checkpoint inhibitors. The researchers also found that in such tumors, T-cells were more likely to be separated from cancer cells by the stromal cells, suggesting that the stromal cells may be hindering the ability of the immune cells to reach and eradicate the cancer cells.

"Some bladder cancers may not respond to immunotherapy, even though the body has developed an immune response against them, because the T-cells are prevented from reaching the tumor by stromal cells that create an inhospitable 'neighborhood,'" said Matthew Galsky, MD, Professor of Medicine and Director of Genitourinary Medical Oncology at The Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, and senior author of the study.

Dr. Galsky and his colleagues are now trying to validate the gene expression identified in their study as a biomarker that could help refine clinical trials and treatment in the future by predicting the level of response or resistance to PD-1/PD-L1 inhibitors. In addition, according to Dr. Galsky, the group is identifying ways to "counteract the negative impact of the stromal cells and make that neighborhood more friendly to immune cells so they can finish their job."

Since they were made available to patients about four years ago, immune checkpoint inhibitors have changed the treatment landscape for many types of cancer, particularly , which had gone several decades without significant therapeutic advances. While five different PD-1 and PD-L1 inhibitors have since been approved by the U.S. Food and Drug Administration, responses are achieved in only 15 percent to 25 percent of patients. Cancer researchers have turned their attention to attempting to learn why and, more specifically, to discovering ways to increase the proportion of patients with positive results.

The Mount Sinai team used several data sets for their study, including genomic data from The Cancer Genome Atlas' bladder cancer dataset from the National Cancer Institute. In addition, in collaboration with researchers from Bristol-Myers Squibb, they demonstrated the potential clinical relevance of their findings in a large clinical trial dataset derived from patients with metastatic bladder cancer treated with the PD-1 inhibitor nivolumab.

"Our biologists and biostatisticians were able to harness 'big data' to generate valuable insights into responses and resistance to PD-1 therapies," noted study co-author Jun Zhu, Ph.D., Professor in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai and Head of Data Sciences at Sema4, a Mount Sinai venture. "We strongly believe those results will inform future studies at Mount Sinai and elsewhere."

Dr. Galsky added, "What our group has done is add another important piece to a larger jigsaw puzzle about why PD-1/PD-L1 inhibitors don't work in some patients. Through our work we have supported and extended important observations made by other researchers, and this makes us more confident than ever that we are on the right track to addressing a huge unmet need for patients with bladder cancer."

Explore further: Simultaneous chemo and immunotherapy may be better for some with metastatic bladder cancer

Related Stories

Simultaneous chemo and immunotherapy may be better for some with metastatic bladder cancer

April 11, 2018
Researchers from Mount Sinai and Sema4, a health information company and Mount Sinai venture, have discovered that giving metastatic bladder cancer patients simultaneous chemotherapy and immunotherapy is safe and that patients ...

Discovery of new biomarker could provide personalized treatment options for bladder cancer

July 2, 2018
A potential new target for treatment has been identified in an aggressive form of bladder cancer, Mount Sinai researchers report in a recent study. Bladder cancers are categorized into subtypes based on molecular features. ...

Researchers artificially generate immune cells integral to creating cancer vaccines

August 14, 2018
For the first time, Mount Sinai researchers have identified a way to make large numbers of immune cells that can help prevent cancer reoccurrence, according to a study published in August in Cell Reports.

Bladder cancer model could pave the way for better drug efficacy studies

May 21, 2018
Understanding that not all bladder cancers are the same, researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have created a tool that may help them to uncover why only a fraction of patients ...

Genetic material once considered junk actually could hold key to cancer drug response

April 3, 2018
Material left out of common processes for sequencing genetic material in cancer tumors may actually carry important information about why only some people respond to immunotherapy, possibly offering better insight than the ...

Researchers find potential key to unlocking the immune system in pancreatic cancer

August 6, 2018
A University of North Carolina Lineberger Comprehensive Cancer Center study may provide insights into how to overcome barriers to using immune-based treatments for pancreatic cancer, the third most deadly cancer in the United ...

Recommended for you

Pancreatic cancer's addiction could be its end

November 13, 2018
Cancer cells are often described as cells "gone bad" or "renegade." New research reveals that in some of the deadliest cases of pancreatic cancer, these rebellious cells have an unexpected addiction. Now, scientists are investigating ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...

Study finds promising therapeutic target for aggressive type of breast cancer

November 13, 2018
A new Nature Communications study led by University of Kentucky Markey Cancer Center researchers suggests that an enzyme known as Prolyl 4-hydroxylase subunit alpha-1 (P4HA1) is a potential therapeutic target for triple negative ...

Scientists shine new light on link between obesity and cancer

November 12, 2018
Scientists have made a major discovery that shines a new, explanatory light on the link between obesity and cancer. Their research confirms why the body's immune surveillance systems—led by cancer-fighting Natural Killer ...

Obesity both feeds tumors and helps immunotherapy kill cancer

November 12, 2018
A groundbreaking new study by UC Davis researchers has uncovered why obesity both fuels cancer growth and allows blockbuster new immunotherapies to work better against those same tumors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.