Enzyme helps build motor that drives neuron death

August 6, 2018, Vanderbilt University
The enzyme HDAC1 aids assembly of a molecular motor that sends a degenerative signal to a neuron's cell body. Credit: Carter Laboratory/Vanderbilt University

A biochemistry instructor curious about an enzyme discovered in the damaged neurons of people with multiple sclerosis made a leap toward a potential cure for countless neurodegenerative ills.

Vanderbilt University's Amrita Pathak, working with Bruce D. Carter, biochemistry professor and associate director of the Vanderbilt Brain Institute, found that the enzyme histone deacetylase 1 (HDAC1), normally in the nucleus of cells, is also present in the axons of some neurons. When a degenerative signal is activated, HDAC1 modifies a component of a molecular motor, which then drives a signaling agent down the axon to the neuron's cell body, killing it.

The motor is integral to that process, Carter said, because of the extreme length of axons in some neurons.

"Some of our neurons, if their cell bodies were the size of basketballs, their axons would reach about 6 miles," he said. "This is a new finding in terms of how the motor can be assembled and allow transport back to the cell body. There has been evidence of a retrograde degenerative signal, and now we've identified key components and a mechanism controlling their transport."

Their paper, "Retrograde degenerative signaling mediated by the p75 neurotrophin receptor requires p150glued deacetylation by axonal HDAC1," appears online today in the journal Developmental Cell.

The biochemistry team worked with Deyu Li, professor of mechanical engineering, to build microfluidic devices that separate the axon from the cell body, allowing them to determine which part of the degenerative signaling process was happening where.

The Carter laboratory has long studied that signaling agent, the neurotrophin receptor p75(NTR), and the role it plays in development and diseases of the brain. It's implicated in Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, ischemia, hormone deficiency and other diseases or injuries to the nervous system.

Their research builds on the work of Vanderbilt University biochemist Stanley Cohen, who in 1986 shared the Nobel Prize for Physiology or Medicine for the discovery of nerve growth factor, the founding member of the neurotrophin family, and its effect on , Carter said.

Pathak, who used sympathetic neurons for her research, intends to find whether similar cellular processes are happening in motor known to be affected in ALS. "If we can block that, we can block the neuron death that occurs," she said.

Explore further: Supply bottleneck impairs nerve function

More information: Developmental Cell (2018). DOI: 10.1016/j.devcel.2018.07.001

Related Stories

Supply bottleneck impairs nerve function

March 9, 2018
Impaired transport processes in neurons contribute to diseases such as amyotrophic lateral sclerosis (AML). Würzburg scientists have now identified key actors in these processes.

Glaucoma study finds brain fights to preserve vision

February 23, 2018
A team of researchers, led by David Calkins, Ph.D., vice chair and director of Research at the Vanderbilt Eye Institute, has made a breakthrough discovery in the field of glaucoma showing new hopes for treatments to preserve ...

Cell biologists discover crucial 'traffic regulator' in neurons

April 19, 2017
Cell biologists from Utrecht University have discovered the protein that may be the crucial traffic regulator for the transport of vital molecules inside nerve cells. When this traffic regulator is removed, the flow of traffic ...

Study identifies new target to preserve nerve function

July 14, 2017
Scientists in the Vollum Institute at OHSU have identified an enzyme that plays a crucial role in the degeneration of axons, the threadlike portions of a nerve cell that transmit signals within the nervous system. Axon loss ...

Changing size of neurons could shed light on new treatments for motor neurone disease

March 5, 2018
New research published in The Journal of Physiology improves our understanding of how motor nerve cells (neurons) respond to motor neurone disease, which could help us identify new treatment options.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.