Novel therapeutic strategy for blood vessel related disorders, such as cancer and retinopathy

August 31, 2018, VIB (the Flanders Institute for Biotechnology)
Blood vessel with an erythrocyte (red blood cell, E) within its lumen, endothelial cells forming its tunica intima (inner layer), and pericytes forming its tunica adventitia (outer layer) Credit: Robert M. Hunt/Wikipedia/CC BY 3.0

A multi-disciplinary team of scientists, led by prof. Peter Carmeliet (VIB-KU Leuven Center for Cancer Biology) has made several breakthrough discoveries concerning the metabolism of the individual building blocks of blood vessels—the so-called endothelial cells. They identified three key proteins that determine how blood vessels grow and behave, and that may become new therapeutic targets in blood vessel related disorders, such as life-threatening cancers and blinding eye diseases. The findings have been published in Nature and Cell Metabolism.

All organs in the human body rely on blood vessels for a continuous supply of nutrients and oxygen. This makes the vasculature—the entire network of blood vessels—one of the largest and most important organs in the body. In healthy individuals, the vasculature is stable and diligently performs its tasks. However, in several serious diseases like cancer or diabetes, the blood vessels derail and start growing excessively or lose their normal function altogether. Given the increasing prevalence of cancer and diabetes, novel therapies for blood vessel-related disorders are urgently needed. Additionally, such novel therapies should be based on entirely different molecular mechanisms than currently available strategies (mostly anti-VEGF), which show limited success due to resistance mechanisms and overall low efficacy.

To pinpoint what determines normal and abnormal blood vessel behavior, research has focused for decades on (ECs), the individual building blocks of . ECs have long been considered as passive building blocks, but Carmeliet and colleagues were the first to reveal a pivotal role for EC in and function. This challenging and pioneering research has now identified three new possible therapeutic targets in blood vessel related disorders.

In a new study, researchers Joanna Kalucka, Laura Bierhansl, Nadine Vasconcelos Conchinha and Rindert Missiaen found that ECs need to burn fatty acids in order to stay healthy and withstand stress insults. They discovered that a protein called 'CPT1A' plays an essential role in this phenomenon and published these insights in the latest edition of Cell Metabolism.

Another publication in the same issue of Cell Metabolism, describes the work of Drs. Ulrike Brüning and Francisco Morales-Rodriguez, who showed that inhibition of an enzyme involved in the synthesis of fatty acids, called FASN, prevents excessive blood vessel growth in eye disease.

Finally, Drs. Guy Eelen and Charlotte Dubois unraveled a totally unexpected role for the enzyme glutamine synthetase in sustaining motility of the ECs through a mechanism requiring a fatty acid called palmitate. Their research results are published in Nature.

This makes CPT1A, FASN and glutamine synthetase possible new therapeutic targets to fight blood vessel related disorders. This highly novel therapeutic approach starting from the metabolism of the endothelial cells is truly promising, and might outperform currently available anti-VEGF therapies in terms of efficacy in the near future.

Explore further: New target for the fight against cancer as a result of excessive blood vessel formation

More information: Guy Eelen et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis, Nature (2018). DOI: 10.1038/s41586-018-0466-7

Joanna Kalucka et al. Quiescent Endothelial Cells Upregulate Fatty Acid β-Oxidation for Vasculoprotection via Redox Homeostasis, Cell Metabolism (2018). DOI: 10.1016/j.cmet.2018.07.016

Related Stories

New target for the fight against cancer as a result of excessive blood vessel formation

August 1, 2013
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments ...

Partially blocking blood vessels' energy source may stop cancer growth, blindness, other conditions

December 12, 2013
Inhibiting the formation of new blood vessels is a common strategy for treating a range of conditions such as cancer, inflammatory diseases, and age-related macular degeneration. Unfortunately, drug inefficiency, resistance, ...

Restoring flawed tumor vessels could lead to better cancer treatments

November 17, 2016
Researchers led by Peter Carmeliet (VIB-KU Leuven) have found a novel way to normalize the dysfunctional blood vessels that are typical for tumors. Those vessels play a pivotal role in cancer metastasis, as their fragility ...

Tumor blood vessel protein provides potential therapeutic target

August 27, 2014
Tumor blood vessels supply oxygen and nutrients to cancer cells and provide access to other organs. While tumor vasculature shares many features with normal vessels, their unique characteristics are potential therapeutic ...

Wake-up call for more research into cell metabolism

July 9, 2014
More scientific research into the metabolism of stromal support cells and immune cells – and the role of the metabolism of these cell types in the development of diseases – could open new therapeutic avenues for diabetes, ...

Study of blood vessel growth may open new pathway to therapies

May 4, 2017
A new Yale-led study detailing how blood vessels develop could lead to novel treatments of cardiovascular diseases as well as cancer.

Recommended for you

Aspirin could play valuable role as additional treatment for cancer

September 26, 2018
Regular use of aspirin could help in the treatment of some cancers, finds a new review of 71 medical studies.

Lung cancer drug could be repurposed to target 'zombie' proteins linked to leukemia

September 25, 2018
A new study by scientists at the University of Liverpool highlights how a clinically-approved lung cancer drug could potentially be 'repurposed' to design new treatments for future cancer therapies.

A protein called vaccinia-related kinase 1 may help cancer establish itself in new areas of the body during metastasis

September 25, 2018
Sometimes negative results can point researchers in the right direction.

Combo therapy of prostatectomy plus radiotherapy may improve survival in prostate cancer

September 25, 2018
High-risk prostate cancer, that which has continued to grow but not yet metastasized, is commonly treated with combination therapies. Each method has pros and cons, but there is little clarity whether one might be more effective ...

Brigatinib becomes potential new first-line option for ALK-positive non-small lung cancer

September 25, 2018
Results of a 275-patient, multi-national phase III clinical trial known as ALTA-1L published today in the New England Journal of Medicine and presented concurrently in the press program at the International Association for ...

Two studies describe improved approach to bone marrow transplant

September 25, 2018
Two recent studies in the journal Leukemia present a new approach for bone marrow donation and transplant that preclinical laboratory tests suggest could make the life-saving procedure safer and more effective for patients.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.