Insulin tracked through cell using new method combining database, experimental results

September 10, 2018, University of Tokyo
Researchers have combined data from multiple databases and original, large-scale lab experiments to track the effects of insulin on other molecules within mouse cells. Cells respond differently to high and low concentrations of insulin. Researchers hope their trans-omic technique will be useful in identifying new methods to control insulin levels in type 2 diabetes and will be applied to understanding other complicated signaling pathways within cells. Credit: Shinya Kuroda CC-BY-ND.

High or low concentrations of insulin activate different cell signaling pathways, according to a new scientific method that combines data from multiple databases and large-scale lab experiments. This ongoing research project may help unveil better approaches to understand the causes of and potential therapies for type 2 diabetes.

Scientists already have methods to understand all the genes (genomics), proteins (proteomics), or metabolites (metabolomics) within a cell, but not all of these different types of at the same time. University of Tokyo researchers are pioneering the new trans-omics approach that combines all of these previously individual fields—the different "omics—to understand the interactions between molecules inside cells in a comprehensive, highly detailed way.

"Our results look almost like a subway map. Each molecule that influences, directly or indirectly, is like a station. But a map is not very useful if you do not know the route. Our method combines database information with new experimental data to show how the different stations, or molecules, connect after receiving the insulin signal," said Professor Shinya Kuroda.

Professor Shinya Kuroda has been pioneering trans-omics approaches since the field started to emerge around 2013. Project Researcher Kentaro Kawata is the first author of the recent paper and completed the research as part of his doctoral studies.

Kuroda and his team are interested in how cells send signals to control their internal processes, especially how those signals change throughout the day. Insulin is a highly dynamic molecule and the hormone that helps control how the body turns sugar from food into energy. Improper regulation of insulin leads to diabetes.

"Type 2 diabetes is a complex disease, but it can be simply understood as an impairment of the temporal pattern of the body's response to insulin," said Kawata.

The research team uncovered that high and low concentrations of insulin activate different genes and metabolic processes. Cells respond not just to the presence or absence of insulin, but can interpret and respond differently to varying concentrations of insulin to control distinct biological processes.

The research team is currently conducting experiments to verify the results they find from their trans-omic data analysis are confirmed by studies with live mice. Detailed understanding of the dynamics of how and when insulin activates so many other molecules within may make it possible to design more effective insulin regimens for people with .

"Once we have mapped the large-scale network, we can identify potential drug targets," said Kuroda.

Explore further: Secretion rates and amounts of insulin trigger different responses in gene expression

More information: Kawata K, Hatano A,i Yugi K, Kubota H, Sano T, Fujii M, Tomizawa Y, Kokaji T, Tanaka KY, Uda S, Suzuki Y, Matsumoto M, Nakayama KI, Kaori Saitoh K, Kato K, Ueno A, Ohishi M, Hirayama A, Soga T, and Kuroda S. 11 September 2018. Trans-omic analysis reveals selective responses to induced and basal insulin across signaling, transcriptional, and metabolic networks. iScience. 10.1016/j.isci.2018.07.022

Related Stories

Secretion rates and amounts of insulin trigger different responses in gene expression

November 22, 2016
Japanese researchers have found that genes respond differently to the amount and rate of secretions of insulin, a hormone whose malfunction can lead to obesity and diabetes. Some genes express themselves quickly when stimulated ...

Culprit in reducing effectiveness of insulin identified

April 26, 2018
Scientists at Osaka University have discovered that Stromal derived factor-1 (SDF-1) secreted from adipocytes reduces the effectiveness of insulin in adipocytes and decreased insulin-induced glucose uptake.

Insulin release is controlled by the amount of Epac2A at the secretory vesicles

July 7, 2017
Specialized beta cells in the pancreas release the hormone insulin to control our blood glucose levels, and failure of this mechanism is central to the development of type-2 diabetes. How much and when insulin is released ...

Transforming skin cells to insulin

August 9, 2017
Researchers at the University of Bergen have transformed skin puncture cells from diabetes patients into insulin producing cells, using stem cell techniques. The researchers' aim is to transplant these cells under the skin ...

Type-2 diabetes: Insulin held up in traffic

February 6, 2018
In a new study, researchers from the universities of Uppsala and Lund show why insulin secretion is not working properly in patients suffering from type-2 diabetes. The report is published in the journal Cell Metabolism.

Researchers identify critical molecular link between inflammation and diabetes

September 12, 2017
A new study by researchers at the University of Maryland School of Medicine (UM SOM) has uncovered how inflammation contributes to a key feature of diabetes, the body's inability to metabolize glucose, a condition known as ...

Recommended for you

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Researchers identify human skeletal stem cells

September 20, 2018
Human skeletal stem cells that become bone, cartilage, or stroma cells have been isolated from fetal and adult bones. This is the first time that skeletal stem cells, which had been observed in rodent models, have been identified ...

A new app enables a smartphone to ID bacteria in just one hour

September 20, 2018
In a potential game changer for the health care industry, a new cell phone app and lab kit now allow a smartphone to identify bacteria from patients anywhere in the world. With the new app, doctors will be able to diagnose ...

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.