Guided by CRISPR, prenatal gene editing used in treating congenital disease before birth

October 8, 2018, Perelman School of Medicine at the University of Pennsylvania
Credit: CC0 Public Domain

For the first time, scientists have performed prenatal gene editing to prevent a lethal metabolic disorder in laboratory animals, offering the potential to treat human congenital diseases before birth. Published today in Nature Medicine, research from the Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia (CHOP) and offers proof-of-concept for prenatal use of a sophisticated, low-toxicity tool that efficiently edits DNA building blocks in disease-causing genes.

Using both CRISPR-Cas9 and base editor 3 (BE3) gene-editing tools, the team reduced cholesterol levels in healthy mice treated in utero by targeting a gene that regulates those levels. They also used prenatal gene editing to improve and prevent neonatal death in a subgroup of mice that had been engineered with a mutation causing the lethal liver disease hereditary tyrosinemia type 1 (HT1).

HT1 in humans usually appears during infancy, and it is often treatable with a medicine called nitisinone and a strict diet. However, when treatments fail, patients are at risk of liver failure or liver cancer. Prenatal treatment could open a door to disease prevention, for HT1 and potentially for other congenital disorders.

"Our ultimate goal is to translate the approach used in these proof-of-concept studies to treat severe diseases diagnosed early in pregnancy," said study co-leader William H. Peranteau, MD, a pediatric and fetal surgeon in CHOP's Center for Fetal Diagnosis and Treatment. "We hope to broaden this strategy to intervene prenatally in congenital diseases that currently have no effective treatment for most patients, and result in death or severe complications in infants."

"We used base editing to turn off the effects of a disease-causing genetic mutation," said study co-leader Kiran Musunuru, MD, Ph.D., MPH, an associate professor of Cardiovascular Medicine at Penn. "We also plan to use the same base-editing technique not just to disrupt a mutation's effects, but to directly correct the mutation." Musunuru is an expert in gene-editing technology and previously showed that it can be used to reduce cholesterol and fat levels in the blood, which could lead to the development of a "vaccination" to prevent cardiovascular disease.

In this study, the scientists used base editor 3 (BE3), which takes clustered regularly interspersed short palindromic repeats (CRISPR), joins it with a modified CRISPR-associated protein 9 to form a partially active version of the CRISPR-Cas 9 tool, and harnesses it as a homing device to carry an enzyme to a highly specific genetic location in the of fetal mice. The enzyme chemically modified the targeted genetic sequence, changing one type of DNA base to another. BE3 is potentially safer than CRISPR-Cas9, because it does not fully cut the DNA molecule and leave it vulnerable to unanticipated errors when the cut is repaired, as has been seen with the CRISPR-Cas9 tool.

After birth, the mice in the study carried stable amounts of edited liver cells for up to three months after the , with no evidence of unwanted, off-target editing at other DNA sites. In the subgroup of the mice bioengineered to model HT1, BE3 improved liver function and preserved survival. The BE3-treated mice were also healthier than mice receiving nitisinone, the current first-line treatment for HT1 patients.

To deliver CRISPR-Cas9 and BE3, the scientists used adenovirus vectors, which have often been used in gene therapy experiments. Because previous gene therapy research has shown that adenovirus vectors may cause unintended and sometimes deleterious responses from the host's immune system, the team is investigating alternate delivery methods such as lipid nanoparticles, which are less likely to stimulate unwanted immune responses.

A future direction for the team, in addition to using base editing to directly correct -causing mutations, will be to investigate its application to other diseases, including those based in organs beyond the liver.

"A significant amount of work needs to be done before prenatal gene editing can be translated to the clinic, including investigations into more clinically relevant delivery mechanisms and ensuring the safety of this approach," said Peranteau, who added, "Nonetheless, we are excited about the potential of this approach to treat genetic diseases of the and other organs for which few therapeutic options exist."

Explore further: CRISPR genome editing technology can correct alpha-1 antitrypsin deficiency

More information: Avery C. Rossidis, et al, "In utero CRISPR-mediated therapeutic editing of metabolic genes," Nature Medicine, online Oct. 8, 2018.

Related Stories

CRISPR genome editing technology can correct alpha-1 antitrypsin deficiency

July 2, 2018
Groundbreaking research demonstrates proof-of-concept for using CRISPR-Cas9 genome editing technology to correct the gene mutation responsible for alpha-1 antitrypsin (AAT) deficiency, successfully making a targeted gene ...

Genome-editing tool could increase cancer risk

June 11, 2018
Therapeutic use of gene editing with the CRISPR-Cas9 technique may inadvertently increase the risk of cancer, according to a new study from Karolinska Institutet, Sweden, and the University of Helsinki, Finland, published ...

Recommended for you

Scientists identify critical cancer immunity genes using new genetic barcoding technology

October 20, 2018
Scientists at Mount Sinai have developed a novel technology for simultaneously analyzing the functions of hundreds of genes with resolution reaching the single cell level. The technology relies on a barcoding approach using ...

A single missing gene leads to miscarriage

October 19, 2018
A single gene from the mother plays such a crucial role in the development of the placenta that its dysfunction leads to miscarriages. Researchers from the Medical Faculty of Ruhr-Universität Bochum (RUB) have observed this ...

Making gene therapy delivery safer and more efficient

October 18, 2018
Viral vectors used to deliver gene therapies undergo spontaneous changes during manufacturing which affects their structure and function, found researchers from the Perelman School of Medicine at the University of Pennsylvania ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.