Nutrients may reduce blood glucose levels

October 10, 2018, Joslin Diabetes Center
Mary-Elizabeth Patti, MD, is investigator in the Section on Integrative Physiology and Metabolism at Joslin Diabetes Center and associate professor of medicine at Harvard Medical School. Credit: John Soares

Type 2 diabetes is driven by many metabolic pathways, with some pathways driven by amino acids, the molecular building blocks for proteins. Scientists at Joslin Diabetes Center now have shown that one amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.

"Our study shows that it's possible we can use specific nutrients, in this case , to change in a cell, and these changes in metabolism can change how take up and release in a beneficial way," says Mary-Elizabeth Patti, MD, an investigator in Joslin's Section on Integrative Physiology and Metabolism and senior author on a paper about the work recently published in Molecular Metabolism.

Performed in cells and in , her group's research began with an attempt to see what nutrients might activate a key protein called AMP kinase (AMPK), says Patti, who is also an associate professor of medicine at Harvard Medical School.

"AMPK is an enzyme in cells throughout the body that is activated when nutrient supplies are low, or in response to exercise," she explains. "AMPK then causes a lot of beneficial changes in the cell, turning on genes that serve to increase energy production. AMPK is a good thing, and it also can be activated by a variety of treatments for type 2 diabetes, such as metformin."

That raised a question for Patti and her colleagues: Could an amino acid switch on this beneficial enzyme?

The investigators began their study by testing many amino acids in rat liver cells (the liver is a crucial organ in ). "Alanine was the one amino acid that was consistently able to activate AMPK," Patti says.

The researchers then confirmed that AMPK was producing some of its usual metabolic effects after alanine activation. Additionally, the activation could be seen in human and mouse liver cells as well as rat liver cells, and was present with either high or low levels of glucose in the cells.

Next, scientists gave alanine by mouth to mice and found that levels of AMPK rose in the animals. Moreover, if mice ate alanine before they received a dose of glucose, their resulting blood were significantly lower. And while glucose metabolism often behaves quite differently in lean mice than in obese mice, this mechanism was seen in both groups of mice.

Following up, the Joslin team found that the glucose lowering didn't seem to be driven by increases in insulin secretion or decreases in secretion of glucagon, a hormone that increases glucose. Instead, AMPK was boosting glucose uptake in the liver and decreasing glucose release. Further experiments in cells demonstrated that the activated enzyme was altering the Krebs cycle, a central component of cell metabolism.

"All these data together suggest that amino acids, and specifically alanine, may be a unique potential way to modify glucose metabolism," Patti sums up. "If it eventually turns out that you can do that by taking an oral drug as a pre-treatment before a meal, that would be of interest. However, this is early-stage research, and we need to test the concept both in mice and ultimately in humans."

Explore further: Exercise mimic molecule may help treat diabetes and obesity

More information: Yusuke Adachi et al, l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism, Molecular Metabolism (2018). DOI: 10.1016/j.molmet.2018.08.002

Related Stories

Exercise mimic molecule may help treat diabetes and obesity

July 27, 2015
Scientists from the University of Southampton have developed a molecule that acts as an exercise mimic, which could potentially help treat type 2 diabetes and obesity.

Study: Most-used diabetes drug works in different way than previously thought

January 6, 2013
A team, led by senior author Morris J. Birnbaum, MD, PhD, the Willard and Rhoda Ware Professor of Medicine, with the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, ...

Animal study suggests common diabetes drug may also help with nicotine withdrawal

April 5, 2018
In a mouse study, a drug that has helped millions of people around the world manage their diabetes might also help people ready to kick their nicotine habits.

New regulator of liver metabolism discovered

September 29, 2017
Researchers from Charité - Universitätsmedizin Berlin have identified an enzyme that has a major effect on glucose utilization in liver cells. The enzyme, retinol saturase, helps these cells adapt to variations in glucose ...

Recommended for you

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.