New transgenic model of Parkinson's illuminates disease biology

October 11, 2018, Brigham and Women's Hospital
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Previous research suggests abnormal αS can alter cell membrane function and lead to cell death. Investigators from Brigham and Women's Hospital have developed a unique mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. This mouse model responds to L-DOPA, similarly to patients with PD. The research team's results on the use of this transgenic mouse model appear this week in Neuron.

"It is difficult to find efficient treatment therapies that target αS aggregation," said lead author Silke Nuber, Ph.D., an instructor in the Ann Romney Center for Neurologic Diseases at BWH. "Thus, it is necessary to develop mouse models that reflect the long-term changes, including Lewy-like aggregation of αS and an associated close PD-phenotype, to better understand the mechanisms that lead to the initiation of PD."

In a healthy brain, this lab first reported (Bartels et al, Nature 2011) that αS can occur normally in the form of helically folded tetramers (four units of αS wound around each other), a form that resists the aggregation that abnormal αS monomers undergo. To model the brain in PD, Nuber and her team created a novel transgenic mouse that has a tetramer-lowering mutation, which leads to αS deposits, loss of dopamine and neurotoxicity.

"With these new mice, we set out to examine the upstream role of tetramer-lowering mutations and their relevance to PD," Nuber said. "Our hypothesis was that upstream destabilization of normal tetramers to excess monomers can lead to the changes of PD."

To examine the effect of tetramer-abrogating mutations on αS pathology, the research team created multiple mouse lines with certain αS mutations that chronically decrease the tetramers, increase free monomers and lead to neuronal dysfunction and degeneration. They then compared their new tetramer-abrogating mouse to a mouse expressing normal human αS protein and a mouse with just a single familial PD αS mutation. The mice were carefully evaluated side-by-side for key biochemical, histological and behavioral characteristics associated with PD.

The new tetramer-abrogating mouse displayed key PD-like changes, including age-dependent αS aggregation in altered neurons and distinctive abnormal movements. These changes were all derived from preventing normal αS tetramer formation. These findings strongly suggest that tetramers are required for the normal state of αS in the brain. The authors conclude that it is likely that shifting tetramers to monomers can initiate PD. They also note that the phenotype was more prominent in male mice, which is reminiscent to what occurs in PD, a finding they plan to follow up on within the framework of the Women's Brain Initiative at BWH.

"We can now examine PD in a whole new light. We can think about stabilizing the physiological αS tetramer, an entirely novel therapeutic concept, as a means of preventing or delaying the onset of PD," said Nuber.

"With our lab's experience in deciphering the earliest stages of Alzheimer's disease, we decided some time ago to apply analogous approaches to the different protein abnormality occurring in PD," said Dennis Selkoe, MD, the senior author of the paper and the co-director of the Ann Romney Center for Neurologic Disease at BWH. "We believe this unique shows that the tetrameric form of αS we discovered in 2011 is necessary for normal neuronal function, so that abrogating the tetramer has direct PD-like consequences. This PD will provide a new route to entirely novel therapeutic approaches."

Explore further: Zombie cells found in brains of mice prior to cognitive loss

More information: Silke Nuber et al, Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson's Disease, Neuron (2018). DOI: 10.1016/j.neuron.2018.09.014

Related Stories

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Treatment for heparin-induced blood disorder revealed in structure of antibody complex

October 6, 2015
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root, according ...

Faulty cellular membrane 'mix' linked to Parkinson's disease

March 15, 2018
Working with lab-grown human brain cells, Johns Hopkins researchers report they have uncovered a much sought-after connection between one of the most common genetic mutations in Parkinson's disease and the formation of fatty ...

Never before seen images of early stage Alzheimer's disease

March 13, 2017
Researchers at Lund University in Sweden have used the MAX IV synchrotron in Lund – the strongest of its kind in the world - to produce images that predate the formation of toxic clumps of beta-amyloid, the protein believed ...

A new mechanism for neurodegeneration in a form of dementia

May 8, 2018
A new study in Biological Psychiatry reports that dementia-related and psychiatric-related proteins cluster together to form aggregates in the brain, leading to abnormal cell function and behavior. Aggregation of the protein ...

A better model for Parkinson's disease

February 1, 2016
Scientists at EPFL solve a longstanding problem with modeling Parkinson's disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.