Anopheles mosquitoes could spread Mayaro virus in US, other diverse regions

November 9, 2018, Pennsylvania State University

Mosquitoes of the genus Anopheles are well known as primary vectors of malaria. But a new study suggests that Anopheles species, including some found in the United States, also are capable of carrying and transmitting an emerging pathogen, Mayaro virus, which has caused outbreaks of disease in South America and the Caribbean.

Mayaro —which can cause fever, joint aches, muscle pains, headache, eye pain, rash, nausea, vomiting and diarrhea—first was isolated from the blood of five symptomatic workers in Mayaro County, Trinidad, in 1954. Since then, it has caused sporadic outbreaks and small epidemics in several South and Central American countries.

In addition, imported cases may be on the rise, with several reported recently in the Netherlands, Germany, France and Switzerland, according to researchers.

"Because the symptoms of Mayaro infection are similar to those caused by other arboviruses [arthropod-borne virus] such as dengue and chikungunya, its prevalence in areas where these other viruses circulate may be higher than reported," said the study's senior author, Jason Rasgon, professor of entomology and disease epidemiology, College of Agricultural Sciences, Penn State.

Rasgon explained that Mayaro virus is thought to be transmitted primarily by canopy-dwelling of the genus Haemagogus. Human infections are sporadic, he said, because Haemagogus species tend to live in rural areas in proximity to forests—where they cycle the virus among nonhuman primates and birds—and do not typically prefer to feed on people. However, when the virus is introduced into urban areas, other mosquito species potentially could trigger epidemics in human populations.

"With the recent increase in imported cases, there are invasion concerns similar to those associated with Zika and chikungunya viruses," Rasgon said. "But little is known about the range of mosquito species that are capable vectors of Mayaro, so our aim was to address that knowledge gap."

In this study, the researchers tested six mosquito species—Aedes aegypti, Anopheles freeborni, An. gambiae, An. quadrimaculatus, An. stephensi and Culex quinquefasciatus—for their ability to transmit two strains of the Mayaro virus. The four Anopheles species were selected to cover different geographical regions: North America (An. freeborni and An. quadrimaculatus), Africa (An. gambiae) and Southeast Asia (An. stephensi).

Mosquitoes were allowed to feed on human blood spiked with the virus via a glass feeder. Researchers then assessed each species at seven and 14 days after infection to determine infection rate (rate of mosquitoes with infected bodies among those analyzed), dissemination rate (rate of mosquitoes with infected legs among those with positive bodies), transmission rate (rate of mosquitoes with infectious saliva among those with positive legs), and transmission efficiency (rate of mosquitoes with infectious saliva among the total number analyzed).

They found that Aedes aegypti and Culex quinquefasciatus were poor vectors of Mayaro virus, with either poor or null infection and transmission rates. However, the results, reported today (Nov. 7) in PLoS Neglected Tropical Diseases, demonstrated that all four Anopheles species were competent laboratory vectors of the virus.

"The capacity of the two North American species of Anopheles to transmit Mayaro is particularly relevant to the United States, because the estimated geographic distribution of these species covers the entire country," Rasgon said.

"The transmission cycle of Mayaro involves mostly nonhuman primates and birds, although there is some evidence of circulation in rodents and marsupials," he said. "We don't know about the capacity of North American mammal species to act as vertebrate reservoirs, but it's possible that Mayaro virus could be maintained in a human-mosquito-human urban cycle similar to what we've seen with chikungunya."

In addition, the researchers noted, Anopheles mosquitoes tend to take multiple blood meals between egg-laying events, and this bite frequency increases their capacity to transmit viruses.

"Despite the fact that Anopheles mosquitoes are widely dispersed worldwide, they currently are neglected as potential vectors of arboviruses," Rasgon said. "Our results suggest that Anopheles may be important vectors driving the emergence and invasion of Mayaro virus across geographically diverse regions of the world, and more research is needed on their epidemiological role in virus invasions."

Explore further: California Aedes mosquitoes capable of spreading Zika

Related Stories

California Aedes mosquitoes capable of spreading Zika

June 21, 2018
Over the last five years, Zika virus has emerged as a significant global human health threat following outbreaks in South and Central America. Now, researchers reporting in PLOS Neglected Tropical Diseases have shown that ...

Another insect-borne virus appears in Haiti

September 19, 2016
Infectious disease specialists say they have confirmed the Mayaro virus in a patient in Haiti.

Usutu, an African virus under surveillance in Europe

June 26, 2018
"This is a virus transmitted by mosquitoes that circulates between birds. It can attack the nervous system of certain birds, such as blackbirds, and cause significant mortality. It was first observed in southern Africa, in ...

Tiger mosquitoes are capable of transmitting yellow fever

September 27, 2018
Since December 2016, Brazil has been grappling with its worst yellow fever outbreak in several decades. To date, there have been 2,043 human cases including 676 fatalities, mainly occurring in ten Brazilian states including ...

Control strategy for Dengue, malaria increases risk of West Nile virus

July 10, 2014
Mosquitoes infected with the bacteria Wolbachia are more likely to become infected with West Nile virus and more likely to transmit the virus to humans, according to a team of researchers.

Does recent isolation of Zika virus from Culex mosquitoes point to a new transmission source?

September 7, 2016
Researchers have identified Zika virus in mosquito species other than Aedes aegypti, which is largely responsible for the current outbreaks of Zika infection, raising concerns that different mosquito vectors may be capable ...

Recommended for you

Researchers a step closer to understanding how deadly bird flu virus takes hold in humans

November 19, 2018
New research has taken a step towards understanding how highly pathogenic influenza viruses such as deadly bird flu infect humans.

Infants born to obese mothers risk developing liver disease, obesity

November 16, 2018
Infant gut microbes altered by their mother's obesity can cause inflammation and other major changes within the baby, increasing the risk of obesity and non-alcoholic fatty liver disease later in life, according to researchers ...

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Antibiotic prescribing influenced by team dynamics within hospitals

November 15, 2018
Antibiotic prescribing by doctors is influenced by team dynamics and cultures within hospitals.

Discovery suggests new route to fight infection, disease

November 14, 2018
New research reveals how a single protein interferes with the immune system when exposed to the bacterium that causes Legionnaires' disease, findings that could have broad implications for development of medicines to fight ...

New research aims to help improve uptake of hepatitis C testing

November 14, 2018
New research published in Scientific Reports shows persisting fears about HIV infection may impact testing uptake for the hepatitis C Virus (HCV).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.