Automated detection of sleep states from olfactory brain waves

November 8, 2018, Public Library of Science
Credit: CC0 Public Domain

Scientists have developed a completely automated technique for real-time detection of sleep/wake states in freely moving mice. Conducted by Karim Benchenane, Sophie Bagur and colleagues at the National Centre for Scientific Research in Paris, the study, publishing on November 8 in the open-access journal, PLOS Biology, describes how local brain activity in the olfactory bulb is enough to accurately classify mouse vigilance states into wake, REM sleep, and non-REM sleep. The olfactory bulb is a brain structure that transmits information related to the sense of smell to the rest of the brain, and in mice projects forward from under the cerebral cortex, towards the nasal cavity.

Understanding the transition between wake and sleep is important for medical and clinical applications ranging from surgical anesthesia to sleep disorders such as insomnia. Although much has been learned from mouse models, tracking sleep/wake states in rodents and the transitions between the two is currently labor-intensive and suffers from variability both between scoring methods and between individual scorers. Using real-time local field potential recordings from the mouse olfactory bulb, the new relies entirely on activity and a preset algorithm, thus making it more efficient, more objective and more reliable than current methods.

After discovering that changes in gamma waves from the olfactory bulb are a reliable marker for sleep/wake states, the team developed an automated sleep-scoring algorithm that performed better than standard classification methods. Unlike standard methods that rely on recordings of muscle activity, the new method did not misclassify rodent "freezing" behavior as sleep. They also found that while from the hippocampus was the best signal for distinguishing REM and non-REM sleep, beta waves from the could do the job almost as well, meaning that the automated system only requires one implanted wire per mouse.

Once the system was established, the scientists were able to use it for several applications, including detecting the depth of anesthesia and characterizing the differences between wake-sleep and sleep-wake transitions. The automated real-time classification system thus has the potential to have wide-ranging applications in sleep research.

Explore further: Disrupted circadian rhythms may drive anxiety and exacerbate brain disorders

More information: Bagur S, Lacroix MM, de Lavilléon G, Lefort JM, Geoffroy H, Benchenane K (2018) Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth. PLoS Biol 16(11): e2005458.

Related Stories

Disrupted circadian rhythms may drive anxiety and exacerbate brain disorders

November 5, 2018
Sleep disruptions are associated with many brain disorders, including anxiety, dementias, and traumatic brain injury. While these disruptions are sometimes viewed as a side effect of brain disorders, new findings presented ...

New role of adenosine in the regulation of REM sleep discovered

September 1, 2016
The regulation and function of sleep is one of the biggest black boxes of today's brain science. A new paper published online on August 2 in the journal Brain Structure & Function finds that rapid eye movement (REM) sleep ...

How nature, nurture shape the sleeping brain

September 24, 2018
Some patterns of electrical activity generated by the brain during sleep are inherited, according to a study of teenage twins published in JNeurosci. Pinpointing the relative contributions of biology and experience to sleep ...

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.

Reversible changes to neural proteins may explain sleep need

June 13, 2018
Long periods of waking can lead to cognitive impairment, and the need to sleep continues to build up. Sleep then refreshes the brain through alterations in molecular biochemistry. These changes impact neuronal plasticity ...

Recommended for you

Concussion tied to suicide risk

November 12, 2018
(HealthDay)—People who have experienced either a concussion or a mild traumatic brain injury are twice as likely to commit suicide than others, a new review suggests.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

In live brain function, researchers are finally seeing red

November 12, 2018
For years, green has been the most reliable hue for live brain imaging, but after using a new high-throughput screening method, researchers at the John B. Pierce Laboratory and the Yale School of Medicine, together with collaborators ...

Researchers identify the neural basis of threatening and aggressive behaviors in Drosophila

November 9, 2018
You can always tell when two guys are about to get into a fight. It starts with angry stares, puffed-out chests, arms tossed out to the side, and little, aggressive starts forward. Neuroscientists call the combination of ...

Multiple sclerosis: Accumulation of B cells triggers nervous system damage

November 9, 2018
B cells are important in helping the immune system fight pathogens. However, in the case of the neurological autoimmune disease multiple sclerosis (MS), they can damage nerve tissue. When particular control cells are missing, ...

Monkey gaze study shows dopamine's role in response inhibition

November 9, 2018
University of Tsukuba researchers report the importance of the brain's dopaminergic system for inhibiting already-planned actions. They trained monkeys to redirect their gaze toward targets presented on a screen, apart from ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.