Non-coding genetic variant could improve key vascular functions

November 15, 2018, University of Chicago Medical Center
Credit: CC0 Public Domain

Atherosclerotic disease, the slow and silent hardening and narrowing of the arteries, is a leading cause of mortality worldwide. It is responsible for more than 15 million deaths each year, including an estimated 610,000 people in the United States.

In the current issue of the Proceedings of the National Academy of Sciences, a team of physicians, geneticists and biologists describes a previously unknown genetic factor that can either raise or reduce the risk of coronary artery or ischemic stroke.

The researchers found that a common non-coding sequence of DNA—known as rs17114036 and located on chromosome 1p32.2—helps regulate in the cells that line the interior surface of blood vessels, the vascular endothelium.

This sequence of DNA contains a (SNP). These are common. There is, on average, one SNP for every 300 nucleotides scattered throughout a person's DNA. SNPs tend to reside between genes. Most have no known effect, but some play a distinct role. The research team found that rs17114036 plays a significant role in and is relevant to human disease incidence.

"This particular polymorphism is a previously unappreciated layer of regulatory control," said Yun Fang, Ph.D., an assistant professor of medicine at the University of Chicago and senior author of the study.

The endothelium helps smooth and speed the of blood through complex vascular intersections, places where branches or bifurcations disrupt the flow from an artery to two smaller vessels. When the flow is smooth and in one direction, the endothelium is quiescent. When the flow is disturbed, it leads to chronic local inflammation and formation of atherosclerotic lesions that underlie heart attacks and strokes. This study shows that a piece of regulatory DNA regulates gene expression and may reduce disease risk.

The researchers, using human aortic endothelial cells, found that their SNP, rs17114036, is located in an enhancer uniquely present within those cells. In that location, it attracts a transcription factor (KLF2), which increases enhancer activity to promote expression of a protein, phospholipid phosphatase 3 (PLPP3), that is favorable to endothelial function and health.

Rs17114036 has been previously shown to be associated in humans with , but only about 5 percent of the population has the protective allele. By boosting efforts by the endothelium to reduce blood flow disturbance through an artery, it lowers their risk of cardiovascular disease.

These people "have won the genetic lottery," Fang said. They carry a SNP associated with lower risk for future cardiovascular events. "If you aced the lottery, you have a protective allele sitting in its specific enhancer, leading to increased expression of PLPP3, which means much less vascular inflammation," he added.

For the other 95 percent, however, it makes things slightly worse. Like 19 out of 20 people, "I carry the risk allele," Fang said. "It increases endothelial response to blood flow disturbance, raising the risk of cardiovascular disease or stroke."

"Our results indicate that genetic predisposition and disturbed blood flow converge to inhibit endothelial PLPP3 in athero-susceptible regions," the authors conclude. "This may provide an attractive approach for future arterial-wall based atherosclerosis therapy complementary to current pharmacological treatments targeting system risk factors."

"Our data," they added, provide a new line of evidence supporting the genetic regulation of complex human diseases and suggest "an underappreciated role of genetic predisposition in the cellular mechanosensing processes."

This study demonstrates that a genetic variant can influence important endothelial function via a noncoding enhancer region. These genetic variants contribute to inter-individual variation in plasma lipid concentrations as well as endothelial response to blood flow. Variants such as rs17114036 are associated with CAD susceptibility "independent of traditional systemic risk factors such as cholesterol and diabetes mellitus and may provide an attractive approach for future arterial wall-based atherosclerosis."

They add, however, "We are still unable to replace this human SNP at rs17114036 in adult aortic endothelium, although we have tried."

The next step for the authors may be the development of nanoparticles that can preferentially bind to the cells under stress and deliver therapeutics to increase PLPP3 in these cells. "Atherosclerosis happens where there is disturbed flow," Fang explained. "If we can make endothelial cells feel like they are exposed to unidirectional flow, there should be less atherosclerosis."

Explore further: The roles of RNA-RNA interactions

More information: Matthew D. Krause et al, Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1810568115

Related Stories

The roles of RNA-RNA interactions

July 20, 2018
Chronic regeneration of damaged endothelial cells at sites of disturbed blood flow in the vasculature promotes the development of atherosclerosis. Now an LMU team has further elucidated the role of a short RNA molecule in ...

Computational models provide novel genetic insights into atherosclerosis

June 28, 2018
Researchers have identified a new gene-activation pathway caused by lipids associated with coronary artery disease, a finding that could help identify new directions in research and drug development. The study was published ...

Blood flow–sensing protein protects against atherosclerosis in mice

December 12, 2017
UCLA scientists have found that a protein known as NOTCH1 helps ward off inflammation in the walls of blood vessels, preventing atherosclerosis—the narrowing and hardening of arteries that can cause heart attacks and strokes. ...

An organ-on-a-chip device that models heart disease

January 2, 2018
When studying diseases or testing potential drug therapies, researchers usually turn to cultured cells on Petri dishes or experiments with lab animals, but recently, researchers have been developing a different approach: ...

Endothelial cells may contribute to formation of new vessels compensating for inadequate blood supply

January 22, 2018
Cells that line the interior surface of blood vessels (endothelial cells) have the capacity to clonally expand and contribute to the development of new vessels due to inadequate blood supply to the heart, known as ischemia, ...

Recommended for you

Increasing statins dose and patient adherence could save more lives

December 7, 2018
Thousands of heart attacks and deaths from cardiovascular disease could be prevented by patients taking higher doses of statins and taking the drugs as advised by doctors.

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

Obesity ups survival in heart failure, but that's no reason to pile on pounds

December 6, 2018
(HealthDay)—Obese people with heart failure may live longer than those who are thinner—especially if they are "metabolically healthy," a new study suggests.

New genetic insight could help treat rare debilitating heart and lung condition

December 6, 2018
The largest study of genetic variation in patients with pulmonary arterial hypertension has associated two important genes with the disease.

New drug target discovered for potential blood pressure treatment

December 5, 2018
Scientists have identified a key player in blood pressure regulation and have shown that switching it off reduces blood pressure in mice, according to new research in eLife.

Neighborhoods with more green space may mean less heart disease

December 5, 2018
People who live in leafy, green neighborhoods may have a lower risk of developing heart disease and strokes, according to new research published in the Journal of the American Heart Association, the Open Access Journal of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.