Team develops nanotechnology-based immunotherapy promoting transplant acceptance

November 6, 2018, The Mount Sinai Hospital

Mount Sinai researchers have developed a novel type of immunotherapy based on innovative nanotechnology that induces long-term organ transplant acceptance in mice. Their study, published in the November 6 online issue of Immunity, could transform patient care and help to overcome barriers that prevent successful long-term transplant outcomes.

"Our findings and the development of a novel nano-immunotherapy platform represent a revolutionary approach to prevent organ transplant rejection," said co-lead investigator Jordi Ochando, Ph.D., Assistant Professor of Medicine, Oncological Sciences, Pathology, and Immunology at the Icahn School of Medicine at Mount Sinai. "If this can be successfully translated to the clinic, this may eliminate the need for lifelong, continuous immunosuppressive medication and provide a promising solution for successful organ transplantation."

The body rejects transplants because of innate immune cells known as myeloid cells, which initiate the immune response by activating T-cells that attack the transplanted organ. To suppress this immune response, must take medication that suppresses the T-cells activity. But these drugs break down the patients' immune systems, putting them at risk of infection and cancer. Also, organ recipients must take more than a dozen pills daily for the rest of their lives.

A team of researchers from Mount Sinai's Translational and Molecular Imaging Institute (TMII) and investigators from across the world identified trained immunity (an activation state of myeloid cells) as playing an important role in .

The Mount Sinai researchers then developed a nano-immunotherapy that directly targets myeloid cells without affecting T-cells, and inhibits trained immunity. When the transplant takes place, the nano-immunotherapy immediately prevents from being activated. That eliminates the triggering of T-cells, so they cannot attack the transplanted organ and cause organ rejection and results in the preservation of T-cell function. Normal T-cell function is important for the body's defense against infections and cancer.

"Instead of suppressing the effects of organ transplantation (activated T-cells), we are preventing the cause (myeloid cell activation) in a highly specific yet short-term fashion. It's a completely different approach that can be employed to other conditions that are characterized by maladaptive trained immunity, such as autoimmune and cardiovascular diseases," said co-lead investigator Willem J.M. Mulder, Ph.D., Professor of Radiology and Oncological Sciences at the Icahn School of Medicine at Mount Sinai, and Director of the Nanomedicine Program at TMII. "We hope in time this could be the standard care for recipients, eliminating the need for medication and further treatment. It may increase the success rate of organ transplantation and makes it safer and easier process for patients."

Investigators tested this nano-immunotherapy on mice undergoing using a very short-term regimen, and did not give these mice standard anti-rejection drugs. The researchers compared those mice with different groups, including mice that underwent heart transplants and were given no nano-immunotherapy or common anti-rejection drugs, and mice that had heart transplants without nano-immunotherapy, but with consistent anti-rejection medication long-term. One hundred days after the procedure, 75 percent of mice in the first group (with nano-immumotherapy but no standard anti-rejection drugs) accepted the heart transplant. All animals that received no nano-immunotherapy treatment or standard anti-rejection medication rejected the transplant before day 10. All with only the standard anti-rejection therapy rejected the within 50 days.

Mount Sinai investigators are evaluating similar nano-immunotherapy approaches in different cardiovascular disease models and initial results are very promising.

"For the past two years, we have been working very intensively towards developing a program for clinical translation of our nano-immunotherapy. With the strong support of the Mount Sinai leadership and Mount Sinai Innovation Partners, we hope to achieve our goal of patient trials within five years," said Zahi Fayad, Ph.D., Director, TMII, Professor, Medical Imaging and Bioengineering, Radiology, and Medicine (Cardiology), Icahn School of Medicine at Mount Sinai.

Explore further: Antibodies may predict transplant rejection risk

Related Stories

Antibodies may predict transplant rejection risk

June 19, 2018
The presence of certain antibodies in patients may suggest a higher risk of transplant rejection across multiple organ types, including the kidney, liver, heart and lungs, according to a new study published in PLOS Medicine.

Transplanted livers help body defend against organ rejection, study finds

April 18, 2018
For decades, transplant experts have observed that liver transplant recipients often need less anti-rejection medication, known as immunosuppressive drugs, than recipients of other solid organs. Similarly, when patients receive ...

New insights into what drives organ transplant rejection

September 6, 2018
When it comes to transplant rejection, some organs are far trickier than others. Some transplantable organs, such as the liver, are readily accepted by the recipient's immune system, rarely triggering an immune response and ...

Researchers link gut bacteria to heart transplant success or failure

October 4, 2018
In a new study, researchers at the University of Maryland School of Medicine (UMSOM) have found that the gut microbiome appears to play a key role in how well the body accepts a transplanted heart. The scientists found a ...

Transplant medication matters for controlling cancer risk

August 1, 2018
Research reveals organ transplant recipients could reduce their risk of developing secondary skin cancer by changing their immunosuppressant medication.

Researchers artificially generate immune cells integral to creating cancer vaccines

August 14, 2018
For the first time, Mount Sinai researchers have identified a way to make large numbers of immune cells that can help prevent cancer reoccurrence, according to a study published in August in Cell Reports.

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Pets can double as asthma antidote

November 16, 2018
(HealthDay)—The "hygiene hypothesis" holds that early exposure to a variety of microorganisms may decrease the risk for chronic inflammatory diseases, like asthma.

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

Defense against intestinal infection in organism is affected by prostaglandin E2

November 15, 2018
The treatment of intestinal infections caused by some strains of the bacterium Escherichia coli, present in unsanitized or contaminated foods, may have a new ally.

No link between 'hypoallergenic' dogs and lower risk of childhood asthma

November 15, 2018
Growing up with dogs is linked to a lower risk of asthma, especially if the dogs are female, a new study from Karolinska Institutet and Uppsala University in Sweden shows. However, the researchers found no relation between ...

Researchers finds better ways to improve the chances of survival of children with a rare immune deficiency

November 15, 2018
An international study published in the journal Blood by researchers led by Dr. Elie Haddad, a pediatric immunologist and researcher at CHU Sainte-Justine and professor at Université de Montréal, highlights the urgent need ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.