Researchers develop accurate, non-invasive method to detect bladder cancer

December 3, 2018, Tufts University
Atomic force microscopy (AFM) map of the adhesion features of the cell surface for a normal cell (left) versus a cancer cell (right) isolated from the urine of patients. Credit: Igor Sokolov, Tufts University

A research team led by Tufts University engineers has developed a non-invasive method for detecting bladder cancer that might make screening easier and more accurate than current invasive clinical tests involving visual inspection of bladder. In the first successful use of atomic force microscopy (AFM) for clinical diagnostic purposes, the researchers have been able to identify signature features of cancerous cells found in patients' urine by developing a nanoscale resolution map of the cells' surface, as reported today in the Proceedings of the National Academy of Sciences (PNAS).

Bladder is one of the leading causes of cancer-related deaths in the United States, with the American Society of Clinical Oncologists estimating 17,240 deaths for 2018. While early detection leads to a five-year survival rate of 95 percent, cancer detected at the metastatic stage leaves the patient with only a 10 percent chance of survival after five years. Current methods for detection involve cystoscopy (running a tube with a video camera into the bladder through the urethra), as well as possible biopsy, and pathology examination of the tissue sample. For who have been treated and are in remission, the recurrence rate is high—between 50 and 80 percent, so invasive cystoscopy exams must be conducted every three to six months at great expense and discomfort for patients.

"By introducing a non-invasive diagnostic method that is more accurate than the invasive visual examination, we could significantly decrease the cost and inconvenience to patients," said Igor Sokolov, professor of mechanical engineering and biomedical engineering at Tufts University School of Engineering and lead author of the study. "All that is needed is a , and not only could we more effectively monitor patients after treatment, we could also more easily screen healthy individuals who may have a family history of the disease, and potentially detect the grade of cancer development. Determining the efficiency of early screening and grade detection is a separate, important task of our future research. "

AFM involves scanning over a surface with a very small cantilever, which is deflected from its position as it passes over the bumps and valleys on the surface. Recording the deflections allows a topographical map to be created with a resolution of fractions of a nanometer. Moreover, the deflection of the AFM cantilever is indicative of some physical properties of the sample. For example, one can measure the adhesion force between the AFM probe and the sample surface. The researchers discovered that bladder cells extracted from urine of a cancer patient have unique surface features that distinguish them from cells extracted from a healthy person, allowing the researchers to apply the method as a diagnostic tool.

The diagnostic method incorporates machine learning, enabling a more accurate recognition of the signature surface features, such as adhesion, roughness, directionality, and fractal properties, among others. The AFM-based test demonstrates more than 90 percent sensitivity in detecting bladder cancer (i.e. if a person is known to have the disease, the test will detect it 90% of the time) versus 20 to 80 percent sensitivity for currently available non-invasive diagnostics on urine samples, such as biochemical evaluation of the biomarker NMP22, genetic analysis using fluorescence in situ hybridization, or immunocytochemistry. Specificity of AFM—the accuracy of identifying individuals who do NOT have the disease—is 82-98%, which is comparable to other tests.

"AFM has been around for more than 30 years, but this is the first time it has shown promise for clinical diagnostics," said Sokolov. "The accuracy appears to be better than the current clinical standard for diagnosis, but we will need to test the method on a larger cohort of patients before it can be introduced into clinical practice. We are hopeful that AFM could ultimately be applied to the detection of other tumor types, such as gastrointestinal, colorectal and cervical cancers."

Explore further: New non-invasive test to detect bladder cancer could spare patients cystoscopy

More information: I. Sokolov el al., "Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1816459115

Related Stories

New non-invasive test to detect bladder cancer could spare patients cystoscopy

February 1, 2017
A new test for bladder cancer could enable GPs to test a urine sample and spare patients the discomfort of a cystoscopy in hospital, according to UCL research published today in Clinical Epigenetics.

Gene-based test for urine detects, monitors bladder cancer

March 22, 2018
Researchers at The Johns Hopkins Kimmel Cancer Center have developed a test for urine, gathered during a routine procedure, to detect DNA mutations identified with urothelial cancers.

Urine liquid biopsies could help monitor bladder cancer treatment

September 26, 2018
Scientists have shown for the first time that immune cells in the urine of bladder cancer patients accurately reflect those in the tumour environment, according to research published today (Wednesday) in the Journal of Experimental ...

Family's grief sparks a quest for better bladder cancer cures

August 28, 2018
"Invasive and uncomfortable' prodedures for detecting if someone has bladder cancer could be replaced by urine tests that not only screen for the presence of the disease but also help doctors choose the right course of treatment ...

Home bladder cancer tests set for clinical trial

June 26, 2017
A leading car sensor manufacturer is developing a device to radically simplify bladder cancer testing.

For some bladder cancer patients, simple test could reduce over-treatment, ease high cost

June 28, 2018
Bladder cancer is relatively common and imposes the highest per patient cost on the U.S. health care system than the management of any other cancer type. Now, a new test could be key to reducing the cost of care while at ...

Recommended for you

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Inflammatory bowel disease linked to prostate cancer

December 7, 2018
Men with inflammatory bowel disease have four to five times higher risk of being diagnosed with prostate cancer, reports a 20-year study from Northwestern Medicine.

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Scientists develop new technology for profiling unique genetic makeup of myeloma tumor cells

December 6, 2018
Cancer arises when cells lose control. Deciphering the "blueprint" of cancer cells—outlining how cancer cells hijack specific pathways for uncontrolled proliferation—will lead to more efficient ways to fight it. Joint ...

Putting the brakes on tumor stealth

December 6, 2018
New research undertaken at Monash University has shed new light on how some cancers are able to escape our immune system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.