Classifying brain microglia: Which are good and which are bad?

December 6, 2018, Children's Hospital Boston
If we see microglia in brain disease, are they part of the problem, or part of the solution? asks Timothy Hammond. Credit: Michael Goderre / Boston Children's Hospital

Microglia are known to be important to brain function. The immune cells have been found to protect the brain from injury and infection and are critical during brain development, helping circuits wire properly. They also seem to play a role in disease—showing up, for example, around brain plaques in people with Alzheimer's.

It turns out aren't monolithic. They come in different flavors, and unlike the 's neurons, they're always changing. Tim Hammond, Ph.D., a neuroscientist in the Stevens lab at Boston Children's Hospital, showed this in an ambitious study, perhaps the most comprehensive survey of microglia ever conducted. Published last week in Immunity, the findings open a new chapter in brain exploration.

"Up until now, we didn't have a good way of classifying microglia," Hammond says. "We could only say how branched they look, how dense they look under a microscope. We wanted to get an idea of what microglia were doing and 'thinking.'"

Eavesdropping on microglia over time

Starting with mice, Hammond and his colleagues sequenced RNA from more than 76,000 individual microglia to see which genes were turned on or off, using a technique known as Drop-seq, developed in McCarroll's lab. The cells were sampled from all over the brain and throughout the animals' lifespan (starting before birth), as well after acute brain injury.

The genetic 'signatures' allowed Hammond to classify the microglia into at least nine distinct groups, including some types never detected in the past. Some types appeared almost exclusively in the embryonic or newborn stages, others only after injury.

Hammond and colleagues' profiling of 76,149 cells from mouse brains identified nine microglia clusters, represented here in two-dimensional space. Credit: Timothy Hammond / Boston Children's Hospital
"The signatures also tell as something about what these cells are doing," he notes. "If we see microglia in disease, for example, we can begin to parse out: Are they contributing to the disease or are they trying to repair the brain? We think this will help uncover new and interesting roles for microglia that weren't known before."

Mapping microglia

Hammond then went a step further. He overlaid the classifications on a map of the brain, to see how the different varieties of microglia were distributed spatially.

This yielded some interesting patterns. One group microglia, for example (group 4 in the schematic above), tended to cluster near the brain's developing white matter. This suggests they could be involved in myelination, in which nerve fibers are given a layer of insulation to help them carry signals over longer distances.

"We don't see those microglia at any other time point or area of the brain," says Hammond. "We think they could be important to how the white matter develops, and how axons connect to different parts of the brain."

Classifying brain microglia: Which are good and which are bad?
This prenatal mouse brain shows the distribution of microglia (from left to right, the hindbrain, midbrain, forebrain and neocortex). The yellow microglia bear markers indicating that they belong to unique populations not detected in the past. Credit: Timothy Hammond / Boston Children's Hospital
In sickness and in health

Another tiny but important microglial population (group 8 in the schematic) came to light in the disease setting. The team found it first in a mimicking multiple sclerosis, which involves a loss of myelination, and later in brain tissue from actual patients with MS.

"These microglia are very inflammatory compared with normal microglia," says Hammond. "It could be a pathological subset that we normally wouldn't see, but because we sequenced so many microglia we were able to detect this small population."

Overall, microglia were most diverse early in , in the aged brain and in disease. The researchers think these distinct groups may shed light on what the cells are doing, and what local cues they're responding to.

Directing therapy?

All this information should help scientists sort out the "good" from the "bad" when it comes to microglia, particularly in so-called activated microglia that appear after brain injury and in diseases like autism and Alzheimer's. This could help direct the development of drugs to promote the beneficial microglia subsets and block the detrimental ones.

"Tim's work has broad implications for the development new microglia biomarkers and tools that can be used to track, identify and manipulate specific subpopulations, in both health and disease," says Beth Stevens, Ph.D., co-corresponding author on the paper with McCarroll and a principal investigator in Boston Children's F.M. Kirby Neurobiology Center.

Explore further: Researchers hope to be able to replace dysfunctional brain cells

More information: Timothy R. Hammond et al, Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes, Immunity (2018). DOI: 10.1016/j.immuni.2018.11.004

Related Stories

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

Microglia are key defenders against prion diseases

May 17, 2018
Prion diseases are slow degenerative brain diseases that occur in people and various other mammals. No vaccines or treatments are available, and these diseases are almost always fatal. Scientists have found little evidence ...

Eliminating microglia prevents heightened immune sensitivity after stress

December 4, 2018
Using an animal model of chronic stress, researchers at The Ohio State University have shown that the immune cells of the brain, called microglia, hold unique signatures of chronic stress that leave the animal more sensitive ...

Microglia react distinctively during inflammation

November 27, 2018
The NorLux Neuro-Oncology Laboratory at LIH's Department of Oncology conducts research on brain diseases, with a special emphasis on glioma biology, drug resistance and systems approaches. Within this research unit, Dr. Alessandro ...

Chinese scientists decipher origins of repopulated microglia in brain and retina

March 1, 2018
The regenerative capability of the central nervous system (CNS) is largely limited due to its intrinsic properties and external environment. Traditional thinking holds that once the brain is injured, it is impossible to repair ...

Researchers identify brain cells responsible for removing damaged neurons after injury

June 25, 2018
Researchers at the University of Virginia School of Medicine have discovered that microglia, specialized immune cells in the brain, play a key role in clearing dead material after brain injury. The study, which will be published ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.