Early clinical trial data show gene therapy reversing sickle cell anemia

December 4, 2018, Cincinnati Children's Hospital Medical Center
Technicians work in the ISO-certified cleanroom laboratory at Cincinnati Children's, where gene-correction therapies are tested and produced for clinical trials like the one for sickle cell anemia presented by Punam Malik MD, at this year's annual meeting of the American Society of Hematology in San Diego. Credit: Cincinnati Children's

After over a decade of preclinical research and development, a new gene therapy treatment for Sickle Cell Anemia (SCA) is reversing disease symptoms in two adults and showing early potential for transportability to resource-challenged parts of the world where SCA is most common.

Preliminary data from a pilot Phase 1-2 clinical trial testing the gene-addition were presented Dec. 3 at the American Society of Hematology's (ASH) annual meeting in San Diego by principal investigator Punam Malik, MD. She is a physician-scientist at the Cincinnati Children's Cancer and Blood Diseases Institute and director of its Comprehensive Sickle Cell Center. Malik called the data promising.

"One year after treatment of our first patient, and six months after treatment of our second patient, both have seen a remarkable improvement in the quality of life due to remarkable reduction in disease symptoms. This includes near elimination of chronic pain and sickling events and improved anemia," Malik said. "Although it's still early post-treatment, these preliminary results are quite promising. If sustained this therapy will provide a transportable, safe and feasible gene therapy for all SCA ."

SCA is a painful, inherited disease where become sickle-shaped and stuck in the vascular system. It can damage vital organs and cause death.

How the Therapy Works

The gene therapy developed by Cincinnati Children's uses a modified gamma globin lentivirus vector to transfer a healthy fetal hemoglobin gene into a patient's blood stem cells (hematopoietic stem cells, HSC). The lentivirus is modified so it does not cause illness.

The therapy comes from the observation that some adults never stop producing fetal hemoglobin (HbF). This prevents red blood cell sickling when sufficient quantities of HbF are present in the body.

Normally, the fetal hemoglobin gene switches off shortly after birth. The new approach designed by Malik and team places a fetal hemoglobin gene in the bone marrow cells that cannot switch off.

Cells are collected earlier from the SCA patient and genetically reprogrammed in a clean lab facility with the modified lentivirus vector. Then the patient's bone marrow is preconditioned with one low-dose of chemotherapy, after which the gene-corrected cells are infused back into the patient. Patients recover their blood counts within a week to 10 days and recover from the chemotherapy effects by two weeks, Malik said.

A key feature of the treatment regimen is the reduced-intensity preconditioning for patients receiving the therapy for SCA. The method is less toxic and expensive than myeloablative preconditioning normally used in bone marrow transplants, according to the researchers.

Myeloablative conditioning uses high-intensity chemotherapy to prepare a transplant patient's bone marrow for healthy gene-corrected blood stem cells (HSCs). This typically results in low blood counts and other side effects. These can include severe infections and long stays in transplant units for one or two months.

This means transplants using myeloablative conditioning have to be performed at large and sophisticated medical centers in developed parts of the world. Malik said this limits access to people in underdeveloped regions where SCA is more common, like Africa, India, the Caribbean and South America.

Reaching High-Need Regions

One goal for Malik and her colleagues is that their therapy's reduced intensity conditioning will allow it to be offered at hospitals in places like Central Africa and other underdeveloped regions of the world.

SCA affects more than 90,000 people in the United States, and millions of people worldwide have the disease, according to the researchers.

Malik said additional data from the study will tell investigators of the consistent and long-term clinical benefit of this therapy to patients with severe SCA. The trial is scheduled to treat up to 10 patients with SCA. Preclinical studies by the research team suggested the treatment allows the body to produce normal red blood cells instead of the sickle-shaped cells that define the inherited disorder.

Improved Quality of Life

Both adult patients included in the ASH presentation are 35 and 25 years old who, respectively, had gene transfer therapy 15 and 12 months ago. In the year and a half prior to receiving gene-correction therapy, both patients had more than a dozen acute sickle events per year, according to Malik. These included acute chest and pain crises, chronic pain, and required the ongoing use of oral or injectable opioids on a regular basis.

Investigators report that one year following therapy, the first patient no longer requires daily oral opioids for chronic pain and has had one acute sickle cell event. The second patient no longer uses oral opioids and has no vaso-occlusive events, where become stuck in the vascular system.

Explore further: Gene therapy for blood disorders

Related Stories

Gene therapy for blood disorders

November 27, 2018
Gene therapy holds a lot of promise in medicine. If we could safely alter our own DNA, we might eliminate diseases our ancestors passed down to us.

UCLA stem cell gene therapy for sickle cell disease advances toward clinical trials

July 1, 2013
Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients ...

BCL11A-based gene therapy for sickle cell disease passes key preclinical test

September 6, 2016
A precision-engineered gene therapy virus, inserted into blood stem cells that are then transplanted, markedly reduced sickle-induced red-cell damage in mice with sickle cell disease, researchers from Dana-Farber/Boston Children's ...

Fighting sickle cell disease using a medication for type 2 diabetes

January 11, 2017
Sickle cell disease and the blood disorder beta thalassemia affect more than 180,000 Americans and millions more worldwide. Both diseases can be made milder or even cured by increasing fetal hemoglobin (HbF) levels, but current ...

Stem cell researchers develop promising method to treat sickle cell disease

March 9, 2015
UCLA stem cell researchers have shown that a novel stem cell gene therapy method could lead to a one-time, lasting treatment for sickle cell disease—the nation's most common inherited blood disorder.

New CAR T case study shows promise in acute myeloid leukemia

May 9, 2018
Chimeric Antigen Receptor T-cell therapy, also known as CAR T therapy, was named the biggest research breakthrough of 2017 by the American Society of Clinical Oncology. The personal gene therapy utilizes a patient's own immune ...

Recommended for you

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

Breast cancer drug could create chink in the armour of pancreatic cancer

December 11, 2018
The well-known drug tamoxifen could exploit a weakness in the physical 'scaffolds' around tumours, according to research led by Imperial.

Taking uncertainty out of cancer prognosis

December 11, 2018
A cancer diagnosis tells you that you have cancer, but how that cancer will progress is a terrifying uncertainty for most patients. Researchers at Cold Spring Harbor Laboratory (CSHL) have now identified a specific class ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.