Fighting sickle cell disease using a medication for type 2 diabetes

January 11, 2017 by Dana Benson, Baylor College of Medicine

Sickle cell disease and the blood disorder beta thalassemia affect more than 180,000 Americans and millions more worldwide. Both diseases can be made milder or even cured by increasing fetal hemoglobin (HbF) levels, but current treatment to ramp up HbF is limited in its effectiveness. Researchers at Baylor College of Medicine and Texas Children's Cancer and Hematology Centers have discovered a gene, FOXO3, involved in controlling fetal hemoglobin production and were able to target the gene and "turn on" fetal hemoglobin levels in patient samples in the lab using the diabetes drug metformin. This offers promising new treatments – the first new drug treatment for sickle cell disease in 30 years and the first ever for beta thalassemia.

"It was a major breakthrough to show that a common drug already in use for type 2 diabetes could be a treatment for sickle cell disease by inducing , a type of hemoglobin that doesn't become sickle shaped but is usually turned off in infancy," said Dr. Vivien Sheehan, assistant professor of pediatrics at Baylor and Texas Children's Cancer and Hematology Centers and lead investigator of the research. "This is an exciting example of collaborative, bench-to-bedside research that has now resulted in a clinical trial that is already enrolling ."

Sheehan launched this research as a clinical fellow at Baylor College of Medicine in 2011 with the goal of identifying new drug targets to help sickle cell patients make more fetal hemoglobin. The only widely used drug to treat sickle cell disease, hydroxyurea, targets fetal hemoglobin by slowing red blood cells from maturing, but does not make enough HbF to help up to half of sickle cell patients and generally does not work in .

Fetal hemoglobin is present in newborns until about 6 months, and then is replaced by adult hemoglobin. Children with sickle cell disease produce a defective form of that causes to become sickle shaped and get stuck in blood vessels, causing painful episodes and other symptoms. In beta thalassemia, patients simply do not produce enough hemoglobin, causing anemia, fatigue and other serious complications.

Starting with 171 patient blood samples and later expanding to 400 more, Sheehan and her research colleagues were looking for genetic differences in sickle cell patients who make a lot of fetal hemoglobin versus those who do not. Collaborating with Baylor's Human Genome Sequencing Center, they used whole exome sequencing and discovered that the FOXO3 gene seemed to control fetal hemoglobin. They found that patients with mutations in the FOXO3 gene made less fetal hemoglobin. Researchers proved this association in the lab by knocking out FOXO3 in human bone marrow cells, which resulted in less fetal hemoglobin, and then overexpressing the gene, which increased it.

Next, researchers used a well-studied diabetes medication, metformin, to increase FOXO3 levels in human bone marrow cells from sickle cell patients. It was already known that metformin induces FOXO3, Sheehan said. When they increased FOXO3, the cells made more fetal hemoglobin. When they treated with hydroxyurea and metformin, they made even more, up to 67 percent.

"Patients who make this much fetal hemoglobin would, in theory, be cured of sickle cell disease, and act like a patient clinically. Metformin may also be an effective therapy for beta thalassemia patients, as it can help them make more hemoglobin by adding HbF, without slowing the production of red cells like hydroxyurea," she said.

With funding from Pfizer, a clinical trial has launched to further study the effectiveness of metformin in patients with sickle cell disease and beta thalassemia. The clinical trial will enroll patients ages 16 to 40 years old from Baylor College of Medicine clinics, Texas Children's Cancer and Hematology Centers and the University of Texas Health Science Center at Houston. It will include patients with not on any treatment, sickle cell patients being treated with hydroxyurea, and patients with beta thalassemia. They will be treated with metformin orally for six months, enough time to see a response in fetal hemoglobin, Sheehan said.

Explore further: CRISPR gene editing reveals new therapeutic approach for blood disorders

Related Stories

CRISPR gene editing reveals new therapeutic approach for blood disorders

August 15, 2016
An international team of scientists led by researchers at St. Jude Children's Research Hospital has found a way to use CRISPR gene editing to help fix sickle cell disease and beta-thalassemia in blood cells isolated from ...

BCL11A-based gene therapy for sickle cell disease passes key preclinical test

September 6, 2016
A precision-engineered gene therapy virus, inserted into blood stem cells that are then transplanted, markedly reduced sickle-induced red-cell damage in mice with sickle cell disease, researchers from Dana-Farber/Boston Children's ...

Multiple myeloma drug could revolutionize treatment for sickle cell disease

December 17, 2015
An established drug for recurrent multiple myeloma might effectively be repurposed to improve the survival and day-to-day lives of patients with devastating sickle cell disease, according to revealing new research by a Feinstein ...

Researchers reveal potential treatment for sickle cell disease

November 2, 2011
A University of Michigan Health System laboratory study reveals a key trigger for producing normal red blood cells that could lead to a new treatment for those with sickle cell disease.

Discovery could help treatments for sickle cell disease

August 8, 2016
An interdisciplinary, international group of researchers has found new biophysical markers that could help improve the understanding of treatments for sickle cell disease, a step toward developing better methods for treating ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.