Natural selection in the womb can explain health problems in adulthood

December 4, 2018, Columbia University's Mailman School of Public Health
Credit: CC0 Public Domain

Conditions encountered in the womb—when the embryo consists of only about 100 cells—can have life-long impact on health. Scientists previously assumed that this is because embryos respond to adverse conditions by programming their gene expression. Now an international team of researchers at the Leiden University Medical Center, Wageningen University and Research, Lund University, Columbia University Mailman School of Public Health in New York propose a radically different alternative. Rather than being programmed by the environment, random differences in gene expression may provide some embryos with a survival advantage, in particular when conditions are harsh. By studying DNA methylation, an important mechanism to control gene activity, the researchers found that a specific part of the DNA methylation pattern was missing among famine-exposed individuals. The findings are published in the journal Cell Reports.

The new research was motivated by the observation that people conceived during the Dutch Hunger Winter of 1944-1945 suffer from reduced cardiovascular health in their sixties. This can be attributed to persistent changes in how genes are expressed, through so-called epigenetic modification of the DNA. "We know that a lack of nutrition decreases the likelihood of an embryo to survive. Our new study indicates that surviving famine in the uterus hinged on having a DNA methylation pattern allowing continued growth of the embryo in spite of limited resources. But those same methylation patterns may have much later in life", says Bas Heijmans, epigeneticist at the Leiden University Medical Center.

To understand the interplay between epigenetics and survival of the embryo, the researchers took inspiration from evolutionary biology. In evolution, random is filtered by natural selection, resulting in accumulation of variants that best 'fit' the environment. A computer model showed that random epigenetic variation between is inevitable, just like genetic mutation. Some of the random DNA methylation variants may enhance an embryo's chance to survive on low nutrition. As a consequence, those epigenetic variants will become more common in cohorts that were exposed to a famine as embryos. "We have always struggled to explain how early embryos would be able to modify specific epigenetic marks in response to nutrition. It is fascinating that selective survival based on random epigenetic variation fits the data best", says Tobias Uller, evolutionary biologist at Lund University.

Some health effects of the Dutch Famine only show later in life and those exposed during early gestation seem to be most affected. "These findings have often been interpreted as conclusive proof of fetal adaptations in the womb that will lead to adult disease if the adult environment changes for the better. But our findings point to a different mechanism", says L.H. Lumey, MD, epidemiologist at Columbia Mailman School and principal investigator of the Dutch Hunger Winter Families study.

Explore further: Prenatal famine drives DNA methylation and adult health six decades later

Related Stories

Prenatal famine drives DNA methylation and adult health six decades later

January 31, 2018
DNA methylation, known to enable the activity of genes and be involved in development and metabolism, plays a key role in the link between prenatal famine exposure and body mass index and adult metabolic health, according ...

People conceived during the Dutch famine have altered regulation of growth genes

December 3, 2014
Individuals conceived in the severe Dutch Famine, also called the Hunger Winter, may have adjusted to this horrendous period of World War II by making adaptations to how active their DNA is. Genes involved in growth and development ...

Genome-wide DNA study shows lasting impact of malnutrition in early pregnancy

May 14, 2015
Researchers at Columbia University's Mailman School of Public Health and Leiden University in the Netherlands found that children whose mothers were malnourished at famine levels during the first 10 weeks of pregnancy had ...

DNA marks in adults tracked back to changes in earliest days of life

July 11, 2018
Scientists have gained a glimpse of how marks on our genes that could be linked to adverse health outcomes in later life behave differently in the first few days after conception, according to new research published in Science ...

Twin study highlights importance of both genetics and environment on gene activity

August 3, 2018
New research highlights the extent to which epigenetic variation is influenced by both inherited and environmental factors.

Recommended for you

Receiving genetic information can change risk

December 11, 2018
Millions of people in the United States alone have submitted their DNA for analysis and received information that not only predicts their risk for disease but, it turns out, in some cases might also have influenced that risk, ...

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

How glial cells develop in the brain from neural precursor cells

December 11, 2018
Two types of cells are active in the brain: nerve cells and glial cells. Glial cells have long been regarded primarily as supportive cells, but researchers increasingly recognize that they play an active role in the communication ...

Big datasets pinpoint new regions to explore the genome for disease

December 10, 2018
Imagine rain falling on a square of sidewalk. While the raindrops appear to land randomly, over time a patch of sidewalk somehow remains dry. The emerging pattern suggests something special about this region. This analogy ...

Team seeks to create genetic map of worm's nervous system

December 10, 2018
How do you build a brain? What "rules" govern where neurons end up, how they connect to each other, and which functions they perform?

Genetic study of epilepsy points to potential new therapies

December 10, 2018
The largest study of its kind, led by international researchers including scientists at RCSI (Royal College of Surgeons in Ireland), has discovered 11 new genes associated with epilepsy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.