New generation of therapeutics based on understanding of aging biology show promise for Alzheimer's disease

December 7, 2018, Alzheimer's Drug Discovery Foundation
PET scan of a human brain with Alzheimer's disease. Credit: public domain

A scientific strategy that explores therapeutic targets based on the biology of aging is gaining ground as an effective approach to prevent and treat Alzheimer's disease, according to research published in the December 7, 2018 online issue of Neurology.

A comprehensive review of the clinical trial landscape, including current agents being studied for the prevention and treatment of Alzheimer's disease (and other dementias), points to the need to develop and test drugs based on an understanding of the multiple effects of aging on the brain.

"Alzheimer's is a complex disease with many different factors that contribute to its onset and progression," says Dr. Howard Fillit, founding executive director and chief science officer of the Alzheimer's Drug Discovery Foundation (ADDF), senior author of the review paper. "Decades of research have revealed common processes that are relevant to understanding why the aging brain is vulnerable to Alzheimer's disease. New therapeutics for Alzheimer's disease will come from this understanding of the effects of aging on the brain."

The only approved medications for Alzheimer's disease relieve some symptoms but do not halt disease progression. New therapies that prevent, slow, or stop the disease are urgently needed to fight the growing Alzheimer's disease burden in the United States and around the world. And, aging biology provides numerous novel targets for new drug development for Alzheimer's disease, notes Dr. Fillit.

"Our success in fighting Alzheimer's disease will likely come from —finding drugs that have positive effects on the malfunctions that happen as people age," says Dr. Fillit. "Combination therapies are the standard of care for other major diseases of aging, such as heart disease, cancer, and hypertension, and will likely be necessary in treating Alzheimer's disease and other dementias."

Increasing age is the leading risk factor for Alzheimer's disease, a progressive neurodegenerative disease that affects 5 million people in the United States and about 50 million globally. With a growing aging population, the Centers for Disease Control and Prevention projects the burden of Alzheimer's disease will nearly triple to 14 million people by 2060.

With aging, many biological processes go awry that have also been implicated in Alzheimer's disease. For example, as people age, they are more likely to have chronic systemic inflammation and neuroinflammation, which is associated with poorer cognitive function. Other aging malfunctions include impaired clearance of toxic misfolded proteins, mitochondrial and metabolic dysfunctions (associated with diabetes), vascular problems, epigenetic changes (changes in gene regulation without alterations in the DNA sequence), and loss of synapses (points of communication between neurons).

Later-phase (phase 3) trials are dominated by drugs targeting beta-amyloid and tau, the classic pathological hallmarks of Alzheimer's disease (of phase 3 trials, 52% are targeting amyloid or tau), but other strategies are gaining ground and are in phase 1 or 2 trials, according to the review paper.

Although therapeutic attempts to remove or decrease the production of beta-amyloid have been largely unsuccessful in altering the disease course of Alzheimer's disease, says Dr. Fillit, researchers learned important information from those clinical trials even if they didn't immediately result in treatments for Alzheimer's patients. And recent clinical trials suggest that problems with clearance of beta-amyloid may yet prove fruitful.

"It is currently not known if these classic pathologies (amyloid and tau) represent valid drug targets and if these targets alone are sufficient to treat Alzheimer's disease," says Dr. Fillit. "Targeting the common of aging may be an effective approach to developing therapies to prevent or delay age-related diseases, such as Alzheimer's."

Explore further: Alzheimer's disease – don't give up on plaque-busting drugs just yet

More information: Neurology (2018). http://n.neurology.org/content/early/2018/12/07/WNL.0000000000006745 , DOI: 10.1212/WNL.0000000000006745

Related Stories

Alzheimer's disease – don't give up on plaque-busting drugs just yet

September 28, 2018
Alzheimer's disease is associated with a build-up of plaques in the brain called amyloid beta. These plaques are thought to lead to a loss of neurons, which then causes the classic symptoms of the disease – including memory ...

Time to rethink how we diagnose Alzheimer's disease

October 3, 2018
With all the focus on Alzheimer disease in recent years as a result of the aging population, what have we learned? A symposium at The North American Menopause Society (NAMS) Annual Meeting in San Diego, October 3-6, will ...

In search of an Alzheimer's cure

October 29, 2018
For decades, the field of Alzheimer's research has been dominated by a major hypothesis: that a build-up of beta amyloid (amyloid-β) in the brain causes Alzheimer's disease. However, despite years of research and billions ...

Discovery could explain failed clinical trials for Alzheimer's, and provide a solution

September 19, 2018
Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trials have failed. The study also identifies a clinically ...

Scientists discover why some people with brain markers of Alzheimer's have no dementia

August 16, 2018
A new study from The University of Texas Medical Branch at Galveston has uncovered why some people that have brain markers of Alzheimer's never develop the classic dementia that others do. The study is now available in the ...

Alzheimer's drug targeting soluble amyloid falls short in a large clinical trial

January 25, 2018
A paper published today in the New England Journal of Medicine reports that solanezumab, a monoclonal antibody-based treatment for Alzheimer's disease developed by Eli Lilly that targets amyloid plaques, did not significantly ...

Recommended for you

Researchers classify Alzheimer's patients in six subgroups

December 5, 2018
Researchers studying Alzheimer's disease have created an approach to classify patients with Alzheimer's disease, a finding that may open the door for personalized treatments.

Neuroscientists pinpoint genes tied to dementia

December 3, 2018
A UCLA-led research team has identified genetic processes involved in the neurodegeneration that occurs in dementia—an important step on the path toward developing therapies that could slow or halt the course of the disease. ...

Detecting signs of neurodegeneration earlier and more accurately

November 30, 2018
Signs of neurodegenerative diseases, appearing years before the emergence of clinical manifestations, can be detected during the examination of medical samples by means of fluorescence microscopy by using new sensitive and ...

Never-before-seen DNA recombination in the brain linked to Alzheimer's disease

November 21, 2018
Scientists from Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified gene recombination in neurons that produces thousands of new gene variants within Alzheimer's disease brains. The study, published today ...

New information on the pathological mechanisms of Alzheimer's disease

November 21, 2018
Researchers at the University of Helsinki have discovered a mechanism by which harmful tau protein aggregates are transmitted between neurons. Alongside amyloid plaques, tau aggregates in the brain are a significant factor ...

DNA vaccine reduces both toxic proteins linked to Alzheimer's

November 20, 2018
A DNA vaccine tested in mice reduces accumulation of both types of toxic proteins associated with Alzheimer's disease, according to research that scientists say may pave the way to a clinical trial.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.