Diseases, Conditions, Syndromes

What should a successful SARS-CoV-2 vaccine do?

A lot has been written recently about the merits of different potential vaccines for SARS-CoV-2. "Merit" is generally assumed to mean that the vaccine will make us immune. But what, exactly, is immunity, and how would we ...

Neuroscience

Scientists reverse aging process in rat brain stem cells

New research, published today in Nature, reveals how increasing brain stiffness as we age causes brain stem cell dysfunction, and demonstrates new ways to reverse older stem cells to a younger, healthier state.

Neuroscience

Star-shaped brain cells orchestrate neural connections

Brains are made of more than a tangled net of neurons. Star-like cells called astrocytes diligently fill in the gaps between neural nets, each wrapping itself around thousands of neuronal connections called synapses. This ...

Psychology & Psychiatry

Visual clues we use during walking and when we use them

(Medical Xpress)—A trio of researchers with the University of Texas and Rensselaer Polytechnic Institute has discovered which phase of visual information processing during human walking is used most to guide the feet accurately. ...

Autism spectrum disorders

Researchers find autism biomarkers in infancy

By using magnetic resonance imaging (MRI) to study the brains of infants who have older siblings with autism, scientists were able to correctly identify 80 percent of the babies who would be subsequently diagnosed with autism ...

page 1 from 40

Surface

In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball or bagel. On the other hand, there are surfaces which cannot be embedded in three-dimensional Euclidean space without introducing singularities or intersecting itself — these are the unorientable surfaces.

To say that a surface is "two-dimensional" means that, about each point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth is (ideally) a two-dimensional sphere, and latitude and longitude provide coordinates on it — except at the International Date Line and the poles, where longitude is undefined. This example illustrates that not all surfaces admits a single coordinate patch. In general, multiple coordinate patches are needed to cover a surface.

Surfaces find application in physics, engineering, computer graphics, and many other disciplines, primarily when they represent the surfaces of physical objects. For example, in analyzing the aerodynamic properties of an airplane, the central consideration is the flow of air along its surface.

This text uses material from Wikipedia, licensed under CC BY-SA