Study traces the neural wiring of a running mouse

By Bill Steele

(Medical Xpress) -- Cornell researchers have identified a group of spinal cord nerve cells that manages running in mice. In the process they have illuminated an interesting step in mouse evolution: When you're being chased by a hawk, you're better off scampering than galloping, even though galloping is faster.

Described in the April 17 online issue of the journal Nature Communications, the research is part of an ongoing effort to learn more about locomotion in animals, essentially by creating a wiring diagram of the locomotor networks in the spinal cord, said Ronald Harris-Warrick, professor of and behavior.

Walking and running share common but overlapping processes in most animals. Locomotion is controlled by a group of neurons called a "central pattern generator" (CPG). The brain says, "Go," and a sort of biological fires in the right sequence and intensity to put one foot in front of the other. When the brain says, "Go really fast!" the program modifies as different neurons join the locomotor network, this research suggests.

To overcome the challenges of observing in the mouse spinal cord, the researchers used various methods, including painstakingly inserting microscopic into single and electrically stimulating nerves to simulate signals from the brain. They discovered a group of neurons called that fired only when signals from the brain called for higher speed.

"These neurons don't play much of a role in moving slowly," Harris-Warrick explained. "For that there are others we haven't discovered yet."

Normal mice running on a treadmill simply speed up their left-right motion to go faster. University of Chicago researchers recently created genetically modified mice that switch at higher speeds from left-right running to bounding, with the two front legs and two rear legs moving in synchrony. That's what most four-legged animals do, Harris-Warrick noted, but apparently for a small creature being chased by a lot of predators, evolution favored left-right running.

"Galloping is faster," he explained, "but if you're galloping, it's hard to turn on a dime. You trade speed for dexterity."

The high-speed neurons apparently activate a neuronal pathway that inhibits the bounding behavior, said the researchers. They showed that they could trigger the bounding gait by infusing the nerves with strychnine, which has the same inhibitory effect. "What this shows us is that the wiring is all there for a mouse to gallop, but these neurons are preventing the animal from galloping," Harris-Warrick said.

The two-phase approach to locomotion goes back much further in the evolutionary tree, the researchers noted. In part, their work was a confirmation in mice of research showing that in zebrafish, the activity of interneurons associated with higher swimming speeds is accompanied by weakening or silencing of other interneurons that were active at lower speeds. The high-speed system in zebrafish changes the way the fish makes sharp "escape turns."

This is the first research to examine the mouse at more than a single speed, the researchers pointed out. In the future, they said, studies over an even wider range of speeds may reveal more variations in the way neurons activate.

Related Stories

A fine balance

Oct 08, 2008

Once a toddler has mastered the art of walking, it seems to come naturally for the rest of her life. But walking and running require a high degree of coordination between the left and right sides of the body. ...

Scientists shed new light on walking

Jan 22, 2010

(PhysOrg.com) -- Researchers at the medical university Karolinska Institutet have created a genetically modified mouse in which certain neurons can be activated by blue light. Shining blue light on brainstems or spinal cords ...

Zinc plays important role in brain circuitry

Nov 22, 2006

To the multitude of substances that regulate neuronal signaling in the brain and spinal cord add a new key player: zinc. By engineering a mouse with a mutation affecting a neuronal zinc target, researchers have demonstrated ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

1 hour ago

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

22 hours ago

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

23 hours ago

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
3.3 / 5 (3) May 12, 2011
Sure, have you ever tried to catch a mouse by hand ? Leftrightleftrightleftrightgooooooooooooooooo. They do have an uncanny ability to determine when to run in a straight line and when to zigzag though. They will usually only zigzag until they get to an area where they determine it's more advantageous to run in a straight line. Football players could probably learn quite a bit watching mice.
mousefunny
not rated yet May 24, 2011
interesting stuff. So do we already gain insights of how neural circuits control movements? what this study will contribute to our understanding and any potential link to the recovery after SCI?