Rogue blood cells may contribute to post-surgery organ damage

June 26, 2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected to the injury.

The study, published today in , examines the way certain , called neutrophils move out of blood vessels to defend damaged organs against injury or infection.

This is normally a one-way journey but researchers were surprised to find that, in some cases, this process can go into reverse, with rogue super-activated neutrophils, re-entering the and causing damage to other parts of the body.

The researchers used a cutting edge imaging technique which allowed them to watch the movement of neutrophils, in three dimensions and in real time in mice. As they expected the neutrophils moved out of blood vessels and into tissues to tackle injury or infection and they showed that his process was being controlled by a protein on the surface of the blood vessels called JAM-C.

However, when they temporarily blocked the blood vessels, mimicking the trauma experienced by patients undergoing , JAM-C was lost from the blood vessels. When this happened the neutrophils seemed to loose their way. Cells that had already exited blood vessels returned to the blood stream and damaged other parts of the body. In particular, the researchers found that these confused but highly activated neutrophils lodged into blood vessels in the lungs where they appeared to cause inflammation and damage to lungs.

Further research on the JAM-C molecule and the properties of these rogue neutrophils could lead to the development of drugs aimed at reducing life threatening complications following major surgeries such as inflammation of the lungs.

Professor Sussan Nourshargh who led the study said: "This is a really exciting piece of research as we have been able to watch how white blood cells move out of blood vessels to enter parts of the body that need their help. But with the advanced imaging technique that we have developed we could also for the first time see neutrophils move back into following trauma. The neutrophils that behave this way are very different from normal blood neutrophils in that they are highly activated and fully capable of causing damage to other organs."

" are usually our first line of defence against infection but they have the ability to cause many diseases. As we learn more about the complex processes that protect us against infections we also find ways of tackling inflammatory diseases where white blood cells are inappropriately switched on."

Explore further: Anti-aging tricks from dietary supplement seen in mice

More information: 'The junctional adhesion molecule JAM-C regulates the polarized transendothelial migration of neutrophils in vivo', Woodfin, et al., Nature Immunology (2011).

Related Stories

Anti-aging tricks from dietary supplement seen in mice

August 21, 2015

In human cells, shortened telomeres, the protective caps at the ends of chromosomes, are both a sign of aging and contribute to it. Scientists at Emory University School of Medicine have found that the dietary supplement ...

Blood vessel cells help tumours evade the immune system

August 24, 2015

A study by researchers at Sweden's Karolinska Institutet is the first to suggest that cells in the tumour blood vessels contribute to a local environment that protects the cancer cells from tumour-killing immune cells. The ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.